- #1
- 132
- 4
Homework Statement
Prove that the maximum value of the Von Neumann entropy for a completely random ensemble is ##ln(N)## for some population ##N##
Homework Equations
##S = -Tr(ρ~lnρ)##
##<A> = Tr(ρA)##
The Attempt at a Solution
Using Lagrange multipliers and extremizing S
Let ##~S = -Tr(ρ~lnρ) + γ (<1> - 1) = -Tr(ρ~lnρ) + γ (Tr(ρ) - 1)##
##δS = Tr( -δρ~ lnρ - ρ \frac{δρ}{ρ} + γ δρ) = 0##
## ∑_k [-lnρ_{kk} - 1 + γ] δρ = 0 ##
⇒ ##ρ_{kk} = e^{γ-1}##
Let ##γ = \frac{1}{N}##
##ρ_{kk} = e^{\frac{1}{N}-1} → \frac{1}{N}## for N very large.
Thus, ##S = -Tr(ρ~lnρ) = -∑_k \frac{1}{N} ln(\frac{1}{N}) = lnN##
Is my solution valid?