I Maxwell's equations in the presence of matter -- Derivation

Click For Summary
The discussion focuses on deriving the integral involving macroscopic polarization, specifically the calculation of the term involving the divergence of polarization and its relationship to Maxwell's equations. It highlights that the expression $$\overrightarrow{\nabla_{\overrightarrow{r^{\prime}}}} \cdot\left(\vec{P}\left(\overrightarrow{r^{\prime}}\right) \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|}\right) = 0$$ is valid due to the properties of divergence in the context of electrostatics. By applying the divergence theorem, the integral can be transformed, leading to a relationship between the polarization and the potential. This transformation is crucial for solving the equation $$\Delta \Phi(\vec{r})$$ in the presence of matter. Understanding these relationships is essential for applying Maxwell's equations effectively in materials with polarization.
LeoJakob
Messages
24
Reaction score
2
I want to calculate ##\int \vec{P}\left(\overrightarrow{r^{\prime}}\right) \cdot \vec{\nabla}_{\overrightarrow{r^{\prime}}} \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} d^{3} \overrightarrow{r^{\prime}}## with macroscopic polarization ##\vec{P}\left(\overrightarrow{r^{\prime}}\right)## because I want to solve:

$$\Delta \Phi(\vec{r})=\Delta \left( \frac{1}{4 \pi \varepsilon_{0}} \int(\frac{\varrho\left(\overrightarrow{r^{\prime}}\right)}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|}+\vec{P}\left(\overrightarrow{r^{\prime}}\right) \cdot \vec{\nabla}_{\overrightarrow{r^{\prime}}} \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|}) d^{3} \overrightarrow{r^{\prime}}\right)$$

There is a note that one can use the fact that: $$\overrightarrow{\nabla_{\overrightarrow{r^{\prime}}}} \cdot\left(\vec{P}\left(\overrightarrow{r^{\prime}}\right) \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|}\right) = 0$$

Why is this true? Does this have anything to do with the maxwell equations?

If I use the hint, I can do the following transformations:
$$
0=\int \overrightarrow{\nabla_{\overrightarrow{r^{\prime}}}} \cdot\left(\vec{P}\left(\overrightarrow{r^{\prime}}\right) \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|}\right) d^{3} \overrightarrow{r^{\prime}} =\int \vec{P}\left(\overrightarrow{r^{\prime}}\right) \cdot \vec{\nabla}_{\overrightarrow{r^{\prime}}} \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} d^{3} \overrightarrow{r^{\prime}}+\int \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} \overrightarrow{\nabla_{\overrightarrow{r^{\prime}}}} \cdot \vec{P}\left(\overrightarrow{r^{\prime}}\right) d^{3} \overrightarrow{r^{\prime}}\\

\Rightarrow \int \vec{P}\left(\overrightarrow{r^{\prime}}\right) \cdot \vec{\nabla}_{\overrightarrow{r^{\prime}}} \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} d^{3} \overrightarrow{r^{\prime}}=\int \frac{1}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} \overrightarrow{\nabla_{\overrightarrow{r^{\prime}}}} \cdot \vec{P}\left(\overrightarrow{r^{\prime}}\right) d^{3} \overrightarrow{r^{\prime}}
$$
 
Physics news on Phys.org
Apply the divergence theorem to a surface outside the material where the polarization exists.
 
Happy holidays folks. So I spent some time over the Thanksgiving holidays and developed a program that renders electric field lines of swiftly moving charges according to the Liénard–Wiechert formula. The program generates static images based on the given trajectory of a charge (or multiple), and the images were compiled into a video that shows the animated field lines for harmonic movement and circular movement of a charge (or two charges). Video: The source code is available here...

Similar threads

Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
4
Views
2K
Replies
2
Views
1K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 14 ·
Replies
14
Views
1K
  • · Replies 1 ·
Replies
1
Views
481
  • · Replies 1 ·
Replies
1
Views
2K