- #1

- 363

- 79

**DISCLAIMER**: in Italy, we talk about "

*circuitazione*" of a field through a closed loop ##\gamma##, for the physical quantity $$\Gamma_\gamma(\overrightarrow{E}) = \sum_{k}\overrightarrow{\Delta l_k} \cdot \overrightarrow{E_k}$$

but after some research, I haven't managed to find the correspondent in English...

Hi guys,

I am having troubles with Maxwell equations related to "choosing" the right frame, of the right radius/dimension for calculating the varying flux of an electromagnetic field and the related loop, for the corresponding induced EM field.

For instance, let's assume a capacitor with parallel-circular plates, of radius ##R## at distance ##d##. The voltage ##V(t)## across it varies over time.

Say we want to calculate the induced mag field at a distance ##r## from the axis of the capacitor, with ##r<R##.

By the fourth Maxwell equation, we know that the "

*circuitazione*" around the loop of radius ##r## is ##\Gamma_\gamma(\overrightarrow{B})=\mu(\epsilon \cdot x^2\pi \cdot\frac{dE}{dt})## and, by definition, ##\Gamma_\gamma(\overrightarrow{B})=2\pi r\cdot B##.

Now, my question is, which radius should I pick in place of ##x## related to the flux variation, and why?

Should it be ##r## or ##R##?