# Maxwell equations Definition and 58 Discussions

Maxwell's equations are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits.
The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon.
An important consequence of Maxwell's equations is that they demonstrate how fluctuating electric and magnetic fields propagate at a constant speed (c) in a vacuum. Known as electromagnetic radiation, these waves may occur at various wavelengths to produce a spectrum of light from radio waves to gamma rays.
The equations have two major variants. The microscopic equations have universal applicability but are unwieldy for common calculations. They relate the electric and magnetic fields to total charge and total current, including the complicated charges and currents in materials at the atomic scale. The macroscopic equations define two new auxiliary fields that describe the large-scale behaviour of matter without having to consider atomic scale charges and quantum phenomena like spins. However, their use requires experimentally determined parameters for a phenomenological description of the electromagnetic response of materials.
The term "Maxwell's equations" is often also used for equivalent alternative formulations. Versions of Maxwell's equations based on the electric and magnetic scalar potentials are preferred for explicitly solving the equations as a boundary value problem, analytical mechanics, or for use in quantum mechanics. The covariant formulation (on spacetime rather than space and time separately) makes the compatibility of Maxwell's equations with special relativity manifest. Maxwell's equations in curved spacetime, commonly used in high energy and gravitational physics, are compatible with general relativity. In fact, Albert Einstein developed special and general relativity to accommodate the invariant speed of light, a consequence of Maxwell's equations, with the principle that only relative movement has physical consequences.
The publication of the equations marked the unification of a theory for previously separately described phenomena: magnetism, electricity, light and associated radiation.
Since the mid-20th century, it has been understood that Maxwell's equations do not give an exact description of electromagnetic phenomena, but are instead a classical limit of the more precise theory of quantum electrodynamics.

View More On Wikipedia.org
1. ### A A question about current density in finite element analysis

I know that if there is only one conductor providing the current density, then the current density can be used. But if you apply Maxwell's equation when there are multiple current sources, I don't know which value to use. This is not an analysis using a tool, but a problem when I develop the...
2. ### A Relationship between magnetic potential and current density in Maxwell

I am currently studying to solve Maxwell's equations using FEM. I have a question about Maxwell's equations while studying. I understood that the magnetic potential becomes ▽^2 Az = -mu_0 Jz when the current flows only in the z-axis. I also understood the effect of the current flowing in a...
3. ### I EM equations - am I missing something?

Summary:: There seems to be a mismatch, in the "Maxwell's" equations, between the number of equations and number of variables. I was trying to play around with the equations for Electromagnetism and noticed something unusual. When expanded, there are 8 equations, 6 unknown variables, and 4...
4. ### Phase velocity in oblique Angle propagation (Plane wave)

Hello, Regarding the wave oblique angle propagation and based on Balanis "Advanced engineering Electromagnetic" book on page 136 ( it has been attached) I need to know why the phase velocity in x direction is not important to keep in step with a constant phase plane( Just equation 4-23). I...

35. ### Help with tensor formulation of special relativity

Homework Statement Hi, I can't seem to understand the following formula in my professor's lecture notes: F_αβ = g_αγ*g_βδ*F^(γδ) Homework Equations Where g_αβ is the diagonal matrix in 4 dimensions with g_00 = 1 and g_11 = g_22 = g_33 = -1 and F^(γδ) is the electromagnetic tensor with c=1...
36. ### Spatial derivative of Electric Field in Faraday's Law?

According to Faraday's Law, Time-Changing magnetic field creates an induced current in a closed conducting loop. This is the equation: ##\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}## 1-) Does this current (##\nabla \times \mathbf{E} ##) have to be an alternate...
37. ### Satisfying Maxwell's Equations

Homework Statement Show whether or not the following functions satisfies Maxwell's Equations in free space. (That is, show whether or not they represent a valid electromagnetic wave). E(x,y,t)=(0,0,E_0 sin(kx-ky+\omega t)) B(x,y,t)=B_0 (sin(kx-ky+\omega t),sin(kx-ky+\omega t),0) Homework...
38. ### Determine the direction of magnetic field from Maxwell eqs?

Hi! My high school physics tells me using right hand grip rule to determine the direction of magnetic field induced by a current carrying wire, but I wonder whether I can deduce the direction merely from Maxwell's Equations? Suppose now we have a current density in cylindrical...
39. ### Maxwell's eqs. & unification of electric & magnetic fields

Maxwell's equations reveal an interdependency between electric and magnetic fields, inasmuch as a time varying magnetic field generates a rotating electric field and vice versa. Furthermore, the equations predict that even in the absence of any sources one can have self propagating electric and...
40. ### I Lorentz Transformations in the context of tensor analysis

Hello everyone, There is something that has been bugging me for a long time about the meaning of Lorentz Transformations when looked at in the context of tensor analysis. I will try to be as clear as possible while at the same time remaining faithful to the train of thought that brought me...
41. ### Over what frequency range are Maxwell's equations valid?

Homework Statement I am studying for an Optics exam and in one of the practise tests is the following question: "Over what frequency range are Maxwell's equations valid?" Homework Equations Maxwell's Equations The Attempt at a Solution I've searched through my Griffiths Intro to...
42. ### Electromagnetic wave in glass

Homework Statement A harmonic EM-wave is propagating in glass in the +x-direction. The refractive index of the glass ##n = 1.4##. The wave number of the wave ##k = 30 \ rad/m##. The magnetic portion of the wave is parallel to the y-axis and its amplitude ##H_0 = 0.10A/m##. At ##t=0## and ##x =...
43. ### Electric field in the vicinity of an antenna

I don't know why I was persuaded that in the free space, the electric field of an EM wave is always orthogonal to the direction of propagation. I've recently read my old textbook, and found that this is true only when the wave is far from the emitting source. But if I've understood right the...
44. ### EM Wave: Phase of the electric and magnetic waves?

In a vacuum, the plane wave solutions to Maxwell's Equations are... E=E0*cos(wt-kr) B=B0*cos(wt-kr) ie they are in phase. (See for example https://www.physics.wisc.edu/undergrads/courses/spring08/208/Lectures/lect20.pdf http://hyperphysics.phy-astr.gsu.edu/hbase/waves/emwv.html ) I don't...
45. ### Static magnetic field from time-varying electric field

Hello! In this thread, in this answer, my statement "A time-varying electric field creates a magnetic field which is time-varying itself" was refuted. Because I never observed this before, I would like to discuss about it. As far as I know, Maxwell's equations are valid always together, that...
46. ### Second derivatives of magnetic potential

Hello, friends! I have been told that, if ##\mathbf{J}## is of class ##C^2## and ##V\subset \mathbb{R}^3## is a ##\mu##-measurable and bounded set, where ##\mu## is the ordinary Lebesgue measure on ##\mathbb{R}^3##, then, for all ##\mathbf{x}\in\mathbb{R}^3##...
47. ### Commutations and delta in deriving Ampère's law

Hi, friends! I have been able to understand, thanks to Hawkeye18, whom I thank again, that, if ##\mathbf{J}## is measurable according to the usual ##\mathbb{R}^3## Lebesgue measure ##\mu_{\mathbf{l}}## and bounded, a reasonable hypothesis if we consider it the density of current, if...
48. ### Biot-Savart law from Ampère's (with multivariate calculus)

Let us assume the validity of Ampère's circuital law\oint_{\gamma}\mathbf{B}\cdot d\mathbf{x}=\mu_0 I_{\text{linked}}where ##\mathbf{B}## is the magnetic field, ##\gamma## a closed path linking the current of intensity ##I_{\text{linked}}##. All the derivations of the Biot-Savart law for a...
49. ### Field form in the optic fibers from Maxwell's equations

Hello! In this document a solution of Maxwell's equations in cylindrical coordinates is provided, in order to determine the electric and magnetic fields inside an optic fiber with a step-index variation. The interface between core and cladding is the cylindrical surface r = a. For example, the...
50. ### Independent fields' components in Maxwell's equations

In a source-free, isotropic, linear medium, Maxwell's equations can be rewritten as follows: \nabla \cdot \mathbf{E} = 0 \nabla \cdot \mathbf{H} = 0 \nabla \times \mathbf{E} = -j \omega \mu \mathbf{H} \nabla \times \mathbf{E} = j \omega \epsilon \mathbf{E} If we are looking for a wave...