MHB Mean value of second derivative of a function

Click For Summary
The discussion focuses on finding the mean value of the second derivative of a parametric curve defined by x = 4t - t^2 and y = 1 - e^-t over the interval 0≤x≤7/4. The second derivative d^2y/dx^2 has been calculated as ((t-1)e^-t)/(4(2-t)^3). To determine the mean value, the average value formula is applied, suggesting the use of the Fundamental Theorem of Calculus (FTC) to compute the integral of y''(x) over the specified interval. The next step involves calculating y'(x) and evaluating it at the endpoints of the interval. This approach leads to the conclusion that the mean value of d^2y/dx^2 is (4e^(-1/2) - 3)/21.
Erfan1
Messages
9
Reaction score
0
The curve C is defined parametrically by x = 4t - t^2 and y = 1 - e^-t where 0≤t<2 .
Show that the mean value of d^2 y / dx^2 with respect to x over the interval 0≤x≤7/4 is (4e^(-1/2) - 3)/ 21 .

I've figured out d^2 y/dx^2 as ((t-1)e^-t)/(4(2-t)^3) . Any idea how to do the the other part ?
 
Physics news on Phys.org
I'm not sure you need to compute $y''(x)$. Why not use the FTC? You know that the average value $\langle f \rangle$ of a function $f$ on the interval $[a,b]$ is given by
$$\langle f \rangle=\frac{1}{b-a} \int_{a}^{b}f(x) \, dx.$$
So the average value of $y''(x)$ on the interval $[0,7/4]$ would be
$$\langle y''(x) \rangle=\frac{1}{7/4-0} \int_{0}^{7/4}y''(x) \, dx
=\frac{4}{7} [y'(x)] \big|_{0}^{7/4}.$$
So now you need to compute $y'(x)$, and evalute at the two endpoints. Does that make sense?
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K