No, the integral of a function f(z) (analytic over a circle of radius a about the point z) over a circle in the complex plane of radius r (r < a) about the point z is ##2 \pi f(z)##. It is an "average" in the sense that we are looking at the sum over the values of a region and that the points in the region of integration that aren't equal to z are essentially meaningless, except for a constant normalizing factor of ##2 \pi##.
Putting it a different way, to find the average of a real function:
##\displaystyle \overline{f} = \dfrac{1}{b - a} \int_a^b f(x) \, dx##
and the "average" of a complex function:
##\displaystyle \overline{f}(z) = \dfrac{1}{2 \pi} \int f(z + r e^{i \theta}) \, d \theta##
There are similarities to an average, so you can actually call it that (hey, that's what the formula is called!) but it isn't quite the same as an average in the sense of the mean value theorem.
-Dan