I just finished a course where we discussed concepts such as Lebesgue integration and Lebesgue measure of sets. Today, I was telling my brother about how the irrationals on the interval [0,1] have measure 1, which is sort of counter-intuitive.(adsbygoogle = window.adsbygoogle || []).push({});

Anyway, he proposed the following question. Let A be the set of irrationals on the interval [0,1] whose first digit in their decimal expansion is even. What is the measure of A? Intuitively, I feel like it should have measure 1/2, since it should capture "half" of the irrationals on [0,1]. However, I can't think of any way to cover these irrationals with open intervals of any total length less than 1.

So if A does have measure 1/2, how can we prove that? If A has measure 1, then how do we reconcile this with the fact that the measure of the irrationals on [0,1] is 1?

Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Measure of Irrationals with Even First Digit

**Physics Forums | Science Articles, Homework Help, Discussion**