The canonical example of a function that is not Riemann integrable is the function f: [0,1] to R, such that f(x)=1 if x is rational and f(x)=0 if x is irrational ( i know some texts put this the other way around, but bear with me because i can reference at least one text that does not). Hence, for any partition P of [0,1], the upper sum is 1 and the lower sum is 0, so that f is not Riemann integrable.(adsbygoogle = window.adsbygoogle || []).push({});

However, Lebesgue's theorem states that if f is a bounded function on a bounded set A, and we extend f to all of R by letting f(x)=0 for all x not in A, then f is Riemann integrable iff the set of points at which the extended f is discontinuous form a set of measure zero (Marsden, "Elementary Classical Analysis", pg 261). Thus, if f is the function defined above, the extension of f is zero everywhere except for the rational numbers r, such that 0 <= r <= 1.

Now it is quite common knowledge that the set of rationals between 0 and 1 is a countable set and thus has measure zero. And since the extension of f is zero everywhere except at these rationals, we should be able to apply Lesbegue's theorem and conclude that f actually IS Riemann integrable on [0,1]. Or you could just use the simple Corollary given in Marsden, that a bounded function with a countable number of discontinuities is Riemann integrable.

Aren't these results contradictory? I know many texts define f as 1 at irrationals and 0 at rationals, so that this issue does not arise. However the text "Measure Theory and Integration" by Taylor presents it the way I described. And besides, it's still a contradictory result, isn't it?

What am I missing here?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Integrability, basic measure theory: seeking help with confusing result

**Physics Forums | Science Articles, Homework Help, Discussion**