I Measurement of a qubit in the computational basis - Phase estimation

Peter_Newman
Messages
155
Reaction score
11
Hello,

I have a question about the measurement of a qubit in the computational basis. I would like to first state what I know so far and then ask my actual question at the end.What I know:
Let's say we have a qubit in the general state of ##|\psi\rangle = \alpha|0\rangle + \beta|1\rangle##. Now we can define the following measurement operators depending on whether we want to measure the qubit in state ##|0\rangle## or ##|1\rangle##. Let's say I am interested in the state ##|0\rangle##.

The corresponding operator would then be defined as follows ##M_0 = |0\rangle\langle 0|##. The probability of obtaining a measurement outcome ##0## is then defined by:

$$p(0)=\langle \psi|M_0^\dagger M_0|\psi\rangle = \langle\psi|M_0|\psi\rangle = |\alpha|^2$$.My Question:
I read the following in the Wikipedia article on Quantum Phase Estimation (Wiki, section measurement). We have now given there the following quantum state:

$$\frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}}e^{2\pi i \delta k}|x\rangle|\psi\rangle$$

Now it is said that a measurement in the computational basis on the first register yields the result ##|a\rangle## with probability;

$$Pr(a) = \left|\left\langle a\left| \frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}}e^{2\pi i \delta k}\right|x\right\rangle\right|^2 = \frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2$$

I am interested in the last equation here (##Pr(a) = ...##), how do you arrive at it? With what I know so far, I can't really derive the last equation, so I would be interested in knowing how the derivation is. Also the simplification does not open up to me. Maybe someone here can demystify it.
 
Last edited:
Physics news on Phys.org
It seems to me like there is a term (x-a) missing in the exponential function. Might that be the case?
 
  • Like
Likes Peter_Newman
Yes that is unfortunately correct!
I would like to improve my first post regarding this error. Unfortunately, I can no longer edit this one...

Correct it is:

$$\frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}(x-a)}e^{2\pi i \delta k}|x\rangle|\psi\rangle$$

$$Pr(a) = \left|\left\langle a\left| \frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}(x-a)}e^{2\pi i \delta k}\right|x\right\rangle\right|^2 = \frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2$$

Based on this, I would now assert the following as to why one come up with ##\frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2##.
So the scalar product of ##\langle a|x\rangle## is only 1 if ##a = x##, if this is the case, everything reduces to ##\frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2##, where we put out the constant ##\left|\frac{1}{2^n}\right|^2 = \frac{1}{2^{2n}}##and note that one of the exp terms is 1 since ##e^0## iff ##a = x##. Right? For all other ##a \neq x##, the scalar product is ##0##. Therefore, ## \frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2## then follows.
 
Last edited:
That looks reasonable to me.
 
  • Like
Likes Peter_Newman
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top