Measurement of a qubit in the computational basis - Phase estimation

Click For Summary
SUMMARY

The discussion focuses on the measurement of a qubit in the computational basis, specifically in the context of Quantum Phase Estimation. The measurement operator for state |0⟩ is defined as M₀ = |0⟩⟨0|, leading to the probability p(0) = |α|² for obtaining the measurement outcome 0. The conversation also delves into the derivation of the probability Pr(a) for measuring a quantum state, correcting an earlier error in the exponential term. The final expression for the probability is established as Pr(a) = (1/2²ⁿ)|∑ₖ e²πiδₖ|², highlighting the significance of the scalar product in determining measurement outcomes.

PREREQUISITES
  • Understanding of qubit states and measurement operators in quantum mechanics
  • Familiarity with Quantum Phase Estimation and its mathematical framework
  • Knowledge of complex exponentials and their role in quantum probability calculations
  • Proficiency in linear algebra, particularly scalar products and summations
NEXT STEPS
  • Study the derivation of Quantum Phase Estimation algorithms in detail
  • Explore the implications of measurement operators in quantum computing
  • Learn about the role of complex numbers in quantum probability theory
  • Investigate the significance of scalar products in quantum state measurements
USEFUL FOR

Quantum physicists, quantum computing researchers, and students studying quantum mechanics who seek to deepen their understanding of qubit measurements and Quantum Phase Estimation techniques.

Peter_Newman
Messages
155
Reaction score
11
Hello,

I have a question about the measurement of a qubit in the computational basis. I would like to first state what I know so far and then ask my actual question at the end.What I know:
Let's say we have a qubit in the general state of ##|\psi\rangle = \alpha|0\rangle + \beta|1\rangle##. Now we can define the following measurement operators depending on whether we want to measure the qubit in state ##|0\rangle## or ##|1\rangle##. Let's say I am interested in the state ##|0\rangle##.

The corresponding operator would then be defined as follows ##M_0 = |0\rangle\langle 0|##. The probability of obtaining a measurement outcome ##0## is then defined by:

$$p(0)=\langle \psi|M_0^\dagger M_0|\psi\rangle = \langle\psi|M_0|\psi\rangle = |\alpha|^2$$.My Question:
I read the following in the Wikipedia article on Quantum Phase Estimation (Wiki, section measurement). We have now given there the following quantum state:

$$\frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}}e^{2\pi i \delta k}|x\rangle|\psi\rangle$$

Now it is said that a measurement in the computational basis on the first register yields the result ##|a\rangle## with probability;

$$Pr(a) = \left|\left\langle a\left| \frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}}e^{2\pi i \delta k}\right|x\right\rangle\right|^2 = \frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2$$

I am interested in the last equation here (##Pr(a) = ...##), how do you arrive at it? With what I know so far, I can't really derive the last equation, so I would be interested in knowing how the derivation is. Also the simplification does not open up to me. Maybe someone here can demystify it.
 
Last edited:
Physics news on Phys.org
It seems to me like there is a term (x-a) missing in the exponential function. Might that be the case?
 
  • Like
Likes   Reactions: Peter_Newman
Yes that is unfortunately correct!
I would like to improve my first post regarding this error. Unfortunately, I can no longer edit this one...

Correct it is:

$$\frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}(x-a)}e^{2\pi i \delta k}|x\rangle|\psi\rangle$$

$$Pr(a) = \left|\left\langle a\left| \frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}(x-a)}e^{2\pi i \delta k}\right|x\right\rangle\right|^2 = \frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2$$

Based on this, I would now assert the following as to why one come up with ##\frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2##.
So the scalar product of ##\langle a|x\rangle## is only 1 if ##a = x##, if this is the case, everything reduces to ##\frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2##, where we put out the constant ##\left|\frac{1}{2^n}\right|^2 = \frac{1}{2^{2n}}##and note that one of the exp terms is 1 since ##e^0## iff ##a = x##. Right? For all other ##a \neq x##, the scalar product is ##0##. Therefore, ## \frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2## then follows.
 
Last edited:
That looks reasonable to me.
 
  • Like
Likes   Reactions: Peter_Newman

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 26 ·
Replies
26
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 71 ·
3
Replies
71
Views
6K