I Measurement of a qubit in the computational basis - Phase estimation

Click For Summary
The discussion revolves around the measurement of a qubit in the computational basis, specifically focusing on the derivation of the probability of measuring a specific state in quantum phase estimation. The initial state of the qubit is defined, and the measurement operator for state |0⟩ is introduced, leading to the probability expression p(0) = |α|². A correction is made regarding the measurement equation, clarifying that the term (x-a) is indeed necessary in the exponential function. The final probability expression, Pr(a) = (1/2²ⁿ)|∑(e^(2πiδk))|², is derived by noting that the scalar product ⟨a|x⟩ equals 1 only when a = x, simplifying the overall expression for other cases.
Peter_Newman
Messages
155
Reaction score
11
Hello,

I have a question about the measurement of a qubit in the computational basis. I would like to first state what I know so far and then ask my actual question at the end.What I know:
Let's say we have a qubit in the general state of ##|\psi\rangle = \alpha|0\rangle + \beta|1\rangle##. Now we can define the following measurement operators depending on whether we want to measure the qubit in state ##|0\rangle## or ##|1\rangle##. Let's say I am interested in the state ##|0\rangle##.

The corresponding operator would then be defined as follows ##M_0 = |0\rangle\langle 0|##. The probability of obtaining a measurement outcome ##0## is then defined by:

$$p(0)=\langle \psi|M_0^\dagger M_0|\psi\rangle = \langle\psi|M_0|\psi\rangle = |\alpha|^2$$.My Question:
I read the following in the Wikipedia article on Quantum Phase Estimation (Wiki, section measurement). We have now given there the following quantum state:

$$\frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}}e^{2\pi i \delta k}|x\rangle|\psi\rangle$$

Now it is said that a measurement in the computational basis on the first register yields the result ##|a\rangle## with probability;

$$Pr(a) = \left|\left\langle a\left| \frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}}e^{2\pi i \delta k}\right|x\right\rangle\right|^2 = \frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2$$

I am interested in the last equation here (##Pr(a) = ...##), how do you arrive at it? With what I know so far, I can't really derive the last equation, so I would be interested in knowing how the derivation is. Also the simplification does not open up to me. Maybe someone here can demystify it.
 
Last edited:
Physics news on Phys.org
It seems to me like there is a term (x-a) missing in the exponential function. Might that be the case?
 
  • Like
Likes Peter_Newman
Yes that is unfortunately correct!
I would like to improve my first post regarding this error. Unfortunately, I can no longer edit this one...

Correct it is:

$$\frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}(x-a)}e^{2\pi i \delta k}|x\rangle|\psi\rangle$$

$$Pr(a) = \left|\left\langle a\left| \frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}(x-a)}e^{2\pi i \delta k}\right|x\right\rangle\right|^2 = \frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2$$

Based on this, I would now assert the following as to why one come up with ##\frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2##.
So the scalar product of ##\langle a|x\rangle## is only 1 if ##a = x##, if this is the case, everything reduces to ##\frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2##, where we put out the constant ##\left|\frac{1}{2^n}\right|^2 = \frac{1}{2^{2n}}##and note that one of the exp terms is 1 since ##e^0## iff ##a = x##. Right? For all other ##a \neq x##, the scalar product is ##0##. Therefore, ## \frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2## then follows.
 
Last edited:
That looks reasonable to me.
 
  • Like
Likes Peter_Newman
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
Replies
5
Views
1K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 26 ·
Replies
26
Views
2K
Replies
1
Views
2K
  • · Replies 71 ·
3
Replies
71
Views
5K