I Measurement of a qubit in the computational basis - Phase estimation

Click For Summary
The discussion revolves around the measurement of a qubit in the computational basis, specifically focusing on the derivation of the probability of measuring a specific state in quantum phase estimation. The initial state of the qubit is defined, and the measurement operator for state |0⟩ is introduced, leading to the probability expression p(0) = |α|². A correction is made regarding the measurement equation, clarifying that the term (x-a) is indeed necessary in the exponential function. The final probability expression, Pr(a) = (1/2²ⁿ)|∑(e^(2πiδk))|², is derived by noting that the scalar product ⟨a|x⟩ equals 1 only when a = x, simplifying the overall expression for other cases.
Peter_Newman
Messages
155
Reaction score
11
Hello,

I have a question about the measurement of a qubit in the computational basis. I would like to first state what I know so far and then ask my actual question at the end.What I know:
Let's say we have a qubit in the general state of ##|\psi\rangle = \alpha|0\rangle + \beta|1\rangle##. Now we can define the following measurement operators depending on whether we want to measure the qubit in state ##|0\rangle## or ##|1\rangle##. Let's say I am interested in the state ##|0\rangle##.

The corresponding operator would then be defined as follows ##M_0 = |0\rangle\langle 0|##. The probability of obtaining a measurement outcome ##0## is then defined by:

$$p(0)=\langle \psi|M_0^\dagger M_0|\psi\rangle = \langle\psi|M_0|\psi\rangle = |\alpha|^2$$.My Question:
I read the following in the Wikipedia article on Quantum Phase Estimation (Wiki, section measurement). We have now given there the following quantum state:

$$\frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}}e^{2\pi i \delta k}|x\rangle|\psi\rangle$$

Now it is said that a measurement in the computational basis on the first register yields the result ##|a\rangle## with probability;

$$Pr(a) = \left|\left\langle a\left| \frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}}e^{2\pi i \delta k}\right|x\right\rangle\right|^2 = \frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2$$

I am interested in the last equation here (##Pr(a) = ...##), how do you arrive at it? With what I know so far, I can't really derive the last equation, so I would be interested in knowing how the derivation is. Also the simplification does not open up to me. Maybe someone here can demystify it.
 
Last edited:
Physics news on Phys.org
It seems to me like there is a term (x-a) missing in the exponential function. Might that be the case?
 
  • Like
Likes Peter_Newman
Yes that is unfortunately correct!
I would like to improve my first post regarding this error. Unfortunately, I can no longer edit this one...

Correct it is:

$$\frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}(x-a)}e^{2\pi i \delta k}|x\rangle|\psi\rangle$$

$$Pr(a) = \left|\left\langle a\left| \frac{1}{2^n}\sum_{x=0}^{2^n-1}\sum_{k=0}^{2^n-1} e^{-\frac{2\pi i k}{2^n}(x-a)}e^{2\pi i \delta k}\right|x\right\rangle\right|^2 = \frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2$$

Based on this, I would now assert the following as to why one come up with ##\frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2##.
So the scalar product of ##\langle a|x\rangle## is only 1 if ##a = x##, if this is the case, everything reduces to ##\frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2##, where we put out the constant ##\left|\frac{1}{2^n}\right|^2 = \frac{1}{2^{2n}}##and note that one of the exp terms is 1 since ##e^0## iff ##a = x##. Right? For all other ##a \neq x##, the scalar product is ##0##. Therefore, ## \frac{1}{2^{2n}}\left| \sum_{k=0}^{2^n-1} e^{2\pi i \delta k} \right|^2## then follows.
 
Last edited:
That looks reasonable to me.
 
  • Like
Likes Peter_Newman
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...