MHB Mechanics-Conical pendulum, circular motion

dragonoid122
Messages
1
Reaction score
0
A particle of 100 grams is attached by two strings of lengths 30cm and 50cm respectively to points A and B, where A is 30cm vertically below B. Find the range of angular velocities for which the particle can describe horizontal circles with both strings taut. Take g as 10m/s^2

Answer
Show diagram if possible
5<angular velocity<9.14
 
Mathematics news on Phys.org
dragonoid122 said:
A particle of 100 grams is attached by two strings of lengths 30cm and 50cm respectively to points A and B, where A is 30cm vertically below B. Find the range of angular velocities for which the particle can describe horizontal circles with both strings taut. Take g as 10m/s^2

Answer
Show diagram if possible
5<angular velocity<9.14

Welcome to MHB, dragonoid! :)

What is your question?
Can you show some of your thoughts?

Note that the range is limited by the fact by the boundary condition where either there is just no tension on the upper string, or there is just no tension on the lower string.

We will need:
  1. equilibrium between the vertical component of the tensional force and the force of gravity,
  2. the horizontal component of the tensional force equal to the required centripetal force.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
11
Views
2K
Replies
3
Views
1K
Replies
2
Views
787
Replies
9
Views
2K
Replies
1
Views
763
Back
Top