MHB Mechanics- connected particles

Shah 72
MHB
Messages
274
Reaction score
0
20210530_210957.jpg

Friction= 1/(sqroot12)×80 cos 30= 20N
I get two equations
T-20=8a and 120-T=12a
a=5m/s^2
I don't know how to calculate the time. Also with this value of acceleration tension value is wrong and the textbook ans is 84N
 
Mathematics news on Phys.org
Shah 72 said:
View attachment 11166
Friction= 1/(sqroot12)×80 cos 30= 20N
I get two equations
T-20=8a and 120-T=12a
a=5m/s^2
I don't know how to calculate the time. Also with this value of acceleration tension value is wrong and the textbook ans is 84N
I calculated the time
S=ut +1/2at^2
(2+1.5)= 1/2×5×t^2
I got t=1s
For q(b) iam getting the ans tension in the rope= 60N but the textbook ans is 84N. Pls help
 
$Mg - T = Ma$
$T - mg(\sin{\theta} + \mu \cos{\theta}) = ma$
———————————————————————
$Mg - mg(\sin{\theta} + \mu \cos{\theta}) = a(M+m)$

$a = \dfrac{g[M-m(\sin{\theta}+ \mu \cos{\theta})]}{M+m} = \dfrac{10\left[12-8\left(\frac{3}{4}\right) \right]}{20}= 3 \, m/s^2$

$T = M(g-a) = 12(7) = 84$N
 
skeeter said:
$Mg - T = Ma$
$T - mg(\sin{\theta} + \mu \cos{\theta}) = ma$
———————————————————————
$Mg - mg(\sin{\theta} + \mu \cos{\theta}) = a(M+m)$

$a = \dfrac{g[M-m(\sin{\theta}+ \mu \cos{\theta})]}{M+m} = \dfrac{10\left[12-8\left(\frac{3}{4}\right) \right]}{20}= 3 \, m/s^2$

$T = M(g-a) = 12(7) = 84$N
Thank you very much!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
2
Views
1K
Replies
3
Views
910
Replies
5
Views
1K
Replies
6
Views
898
Replies
6
Views
1K
Replies
1
Views
2K
Back
Top