MHB Mechanics- connected particles

AI Thread Summary
The discussion focuses on calculating tension and acceleration in a system involving connected particles with friction. The initial calculations yield an acceleration of 5 m/s² and a tension of 60 N, which contradicts the textbook answer of 84 N. The user later recalculates the time using the equation S=ut + 1/2at², finding t=1s. Further analysis using the equations Mg - T = Ma and T - mg(sinθ + μ cosθ) = ma leads to a corrected acceleration of 3 m/s² and confirms the tension as 84 N. The thread emphasizes the importance of correctly applying physics equations to resolve discrepancies in calculated values.
Shah 72
MHB
Messages
274
Reaction score
0
20210530_210957.jpg

Friction= 1/(sqroot12)×80 cos 30= 20N
I get two equations
T-20=8a and 120-T=12a
a=5m/s^2
I don't know how to calculate the time. Also with this value of acceleration tension value is wrong and the textbook ans is 84N
 
Mathematics news on Phys.org
Shah 72 said:
View attachment 11166
Friction= 1/(sqroot12)×80 cos 30= 20N
I get two equations
T-20=8a and 120-T=12a
a=5m/s^2
I don't know how to calculate the time. Also with this value of acceleration tension value is wrong and the textbook ans is 84N
I calculated the time
S=ut +1/2at^2
(2+1.5)= 1/2×5×t^2
I got t=1s
For q(b) iam getting the ans tension in the rope= 60N but the textbook ans is 84N. Pls help
 
$Mg - T = Ma$
$T - mg(\sin{\theta} + \mu \cos{\theta}) = ma$
———————————————————————
$Mg - mg(\sin{\theta} + \mu \cos{\theta}) = a(M+m)$

$a = \dfrac{g[M-m(\sin{\theta}+ \mu \cos{\theta})]}{M+m} = \dfrac{10\left[12-8\left(\frac{3}{4}\right) \right]}{20}= 3 \, m/s^2$

$T = M(g-a) = 12(7) = 84$N
 
skeeter said:
$Mg - T = Ma$
$T - mg(\sin{\theta} + \mu \cos{\theta}) = ma$
———————————————————————
$Mg - mg(\sin{\theta} + \mu \cos{\theta}) = a(M+m)$

$a = \dfrac{g[M-m(\sin{\theta}+ \mu \cos{\theta})]}{M+m} = \dfrac{10\left[12-8\left(\frac{3}{4}\right) \right]}{20}= 3 \, m/s^2$

$T = M(g-a) = 12(7) = 84$N
Thank you very much!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
1K
Replies
2
Views
1K
Replies
3
Views
919
Replies
5
Views
1K
Replies
6
Views
911
Replies
6
Views
1K
Replies
1
Views
2K
Back
Top