Mellin transform of Dirac delta function ##\delta(t-a)##

Click For Summary
The discussion centers on the Mellin transform of the Dirac delta function, specifically ##\delta(t-a)##. The Laplace transform is identified as ##F(s) = e^{-st}##, utilizing the property that ##\int_{\infty}^{-\infty} f(t) \delta(t-a) dt = f(a)##. The user expresses uncertainty about applying the residue theorem due to the absence of singularities in the Mellin transform. They also mention a potential mistake in their post regarding the inverse Mellin transform and seek clarification on the equivalence of different transformation formulas. The discussion highlights the relationship between the delta function and its representation in Fourier transforms as a useful proof tool.
happyparticle
Messages
490
Reaction score
24
Homework Statement
Mellin transform of Dirac delta function ##\delta(t-a)##
Relevant Equations
##F(s)= \int_0^{\infty} \delta (t-a)e^{-st} dt##

##f(t) = \frac{1}{2 \pi i} \int_{\gamma - i \omega}^{\gamma +i \omega} F(s) e^{st} ds##
Hi,
I found Laplace transform of this Dirac delta function which is ##F(s) = e^{-st}## since ##\int_{\infty}^{-\infty} f(t) \delta (t-a) dt = f(a)##
and that ##\delta(x) = 0## if ##x \neq 0##

Then the Mellin transform
##f(t) = \frac{1}{2 \pi i} \int_{\gamma - i \omega}^{\gamma +i \omega} e^{-sa} e^{st} ds##
Since there's no singularity I can't use the residue theorem, so I'm not sure what else can I use.
 
Physics news on Phys.org
I made a mistake, if someone can edit the post I would say the inverse Mellin transform.
 
You use e but wiki uses x as
The Mellin transform of a function f is

{\displaystyle \left\{{\mathcal {M}}f\right\}(s)=\varphi (s)=\int _{0}^{\infty }x^{s-1}f(x)\,dx.}
Are they equivalent?
1647860532674.png

Let ##f(x)=\delta(x-a)## a>0
\{Mf\}(s)= a^{s-1}
\{M^{-1}\phi\}(x)= \frac{1}{2\pi i a}\int_{c-i\infty}^{c+i\infty} t^{-s} ds
where t=x/a. It should be ##\delta(x-a)##.

I observe expression of delta(x) in Fourier transform\delta(x)=\frac{1}{2\pi i} \int_{-i\infty}^{i\infty}e^{px} dp
is useful for the proof.
 
Last edited:
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...