1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Method of shells around a different axis

  1. Sep 5, 2013 #1
    1. The problem statement, all variables and given/known data

    Use the method of cylindrical shells to find the volume generated by rotation the region bounded by the given curves about the specified axis.

    2. Relevant equations


    y = x^2, y = 2-x^2; about x = 1
    3. The attempt at a solution

    I tried to just break it down.
    I want something of the form 2∏rhΔr
    OK so To find the height f(x) I subtracted.
    2-x^2-x^2 = 2-2x^2. For the radius I did a-x so 1-x is the radius


    So I have

    V = 2∏∫ (1-x)(2-2x^2)dx between -1 and 1 because that is where the graphs intersect.
    Evaluating it I got 2∏((x^4)/2 -(2x^3)/3 -x^2 +2x ] between -1 and 1

    I got 16∏/3
    Is this the right way?
     
  2. jcsd
  3. Sep 5, 2013 #2

    CAF123

    User Avatar
    Gold Member

    Yes, it is correct. Try doing it using disks and see if you can obtain the same answer. This will allow you to compare the complexity of the resulting integrals and see why one method is more efficient than the other in this case.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Method of shells around a different axis
  1. Shell Method (Replies: 1)

  2. Shell method (Replies: 3)

  3. Shell Method (Replies: 7)

Loading...