Microring resonator matrix

Click For Summary
SUMMARY

The forum discussion centers on the mathematical representation of a simple ring resonator with a bus waveguide, specifically the matrix equation involving elements t, k, -k*, and t*. Participants express confusion regarding the use of conjugated terms and their implications for the phase of the circulating mode. The discussion highlights the lack of clear explanations in existing literature, with references to several papers that do not adequately address the reasoning behind the conjugation in the matrix formulation.

PREREQUISITES
  • Understanding of optical resonators and waveguides
  • Familiarity with matrix algebra in the context of physics
  • Knowledge of complex conjugates and their significance in wave phenomena
  • Basic principles of optical sensing applications
NEXT STEPS
  • Research the mathematical derivation of ring resonator matrices in optical physics
  • Study the role of complex conjugates in waveguide theory
  • Explore advanced literature on integrated polymer micro-ring resonators
  • Investigate the phase behavior of circulating modes in optical resonators
USEFUL FOR

Researchers, optical engineers, and students in photonics or optical engineering who are looking to deepen their understanding of ring resonator dynamics and matrix representations in waveguide systems.

Rampart123
Messages
2
Reaction score
0
TL;DR
Explaining the matrix elements.
Hello everyone,
1713121310430.png

A simple ring resonator with a bus waveguide is described by:
$$ \begin{pmatrix} E_{t1}\\ E_{t2} \end{pmatrix} =
\begin{pmatrix} t & k\\ -k^* & t^* \end{pmatrix}
\begin{pmatrix} E_{i1}\\ E_{i2} \end{pmatrix} $$

I do not understand though why we have -k* and t*? Shouldn't they be also k and t?

I think the conjugation has to do with the phase of the circulating mode?

Thank you in advance!
 
Science news on Phys.org
Rampart123 said:
TL;DR Summary: Explaining the matrix elements.

Hello everyone,

A simple ring resonator with a bus waveguide is described by:
$$ \begin{pmatrix} E_{t1}\\ E_{t2} \end{pmatrix} =
\begin{pmatrix} t & k\\ -k^* & t^* \end{pmatrix}
\begin{pmatrix} E_{i1}\\ E_{i2} \end{pmatrix} $$

I do not understand though why we have -k* and t*? Shouldn't they be also k and t?

I think the conjugation has to do with the phase of the circulating mode?

Thank you in advance!
The derivation appears in several papers, unfortunately some of these references are behind a paywall:

https://opg.optica.org/oe/fulltext.cfm?uri=oe-12-1-90&id=78458
https://digital-library.theiet.org/content/journals/10.1049/el_20000340
https://www.researchgate.net/public...GFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
 
Andy Resnick said:
Thank you for the reply. However, it seems to me that it is not explained in neither of these 3 papers that you mentioned.
In the first paper: It just uses the matrix but does not explain why we have the conjugate
In the second paper: The same as in the first.
In the third paper: The matrix does not have any conjugation, but rather the matrix consists of only t and k, which was also the question of mine.

Why it is
$$ \begin{pmatrix} E_{t1}\\ E_{t2} \end{pmatrix} =
\begin{pmatrix} t & k\\ -k^* & t^* \end{pmatrix}
\begin{pmatrix} E_{i1}\\ E_{i2} \end{pmatrix} $$ and not

$$ \begin{pmatrix} E_{t1}\\ E_{t2} \end{pmatrix} =
\begin{pmatrix} t & k\\ k & t \end{pmatrix}
\begin{pmatrix} E_{i1}\\ E_{i2} \end{pmatrix} $$

Most articles do not explain, they just use the matrix that they found in a book and then do some calculations.
 
Rampart123 said:
Thank you for the reply. However, it seems to me that it is not explained in neither of these 3 papers that you mentioned.
In the first paper: It just uses the matrix but does not explain why we have the conjugate
In the second paper: The same as in the first.
In the third paper: The matrix does not have any conjugation, but rather the matrix consists of only t and k, which was also the question of mine.

Why it is
$$ \begin{pmatrix} E_{t1}\\ E_{t2} \end{pmatrix} =
\begin{pmatrix} t & k\\ -k^* & t^* \end{pmatrix}
\begin{pmatrix} E_{i1}\\ E_{i2} \end{pmatrix} $$ and not

$$ \begin{pmatrix} E_{t1}\\ E_{t2} \end{pmatrix} =
\begin{pmatrix} t & k\\ k & t \end{pmatrix}
\begin{pmatrix} E_{i1}\\ E_{i2} \end{pmatrix} $$

Most articles do not explain, they just use the matrix that they found in a book and then do some calculations.
Ok, so a little more digging is required. How about this:

https://hal.science/hal-00474731/document
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K