Minimum average value of position

Click For Summary

Homework Help Overview

The discussion revolves around finding the minimum average value of position, denoted as , in the context of quantum mechanics. Participants are examining the expression for the wave function ϕ(x) and its implications for calculating through integration.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants are attempting to calculate using the integral ∫xϕ(x) dx but are encountering difficulties with the limits of integration. There is also a suggestion to differentiate ϕ(x) to find minima instead of calculating . Some participants question the necessity of finding and discuss the relationship between and ϕ(x).

Discussion Status

The discussion is ongoing, with some participants providing guidance on the need to calculate and clarifying the distinction between differentiating and differentiating ϕ(x) or its square. There are multiple interpretations being explored regarding the definition of the "minimum" value and the conditions under which should be minimized.

Contextual Notes

There is a mention of specific values for parameters a and b that affect the calculation of , and participants are considering the implications of these parameters on the average position. The original poster's expression for is questioned, indicating potential misunderstandings in the setup of the problem.

tanaygupta2000
Messages
208
Reaction score
14
Homework Statement
Let ψ₀(x) and ψ₁(x) be the wave functions corresponding to the ground state and the first excited states of a one dimensional harmonic oscillator respectively. Consider the normalized state ϕ(x) = αψ₀(x) + βψ₁(x), where α and β are real numbers. The values of α and β for which <x>, the average value of the position is a minimum are:

(a) α = -β = 1/√2
(b) α = β = 1/√2
(c) α = 1/√3 and β = -√(2/3)
(d) α = 1/√3 and β = √(2/3)
Relevant Equations
For one-dimensoinal harmonic oscillator,
Ground state wavefunction, ψ₀(x) = (mw/πℏ)^(1/4) exp[-(mw/2ℏ)x^2]
First excited state wavefunction, ψ₁(x) = (mw/πℏ)^(1/4) * x√(2mw/ℏ) * exp[-(mw/2ℏ)x^2]

Average value of position, <x> = ∫xϕ(x) dx
After getting the values of ψ₀(x) and ψ₁(x), I put them in the expression of ϕ(x) to get:
ϕ(x) = (mw/πℏ)^(1/4) * exp[-(mw/2ℏ)x^2] * [α + βx√(2mw/ℏ)]

Now when attempting to find the value of <x> by ∫xϕ(x) dx, I am having trouble determining the limits, as I am getting nothing useful by integrating from -∞ to ∞.
Also, do I even need to find <x>, can't I equate the derivative of simply ϕ(x) to 0 to get the minima, as <x> ∝ ϕ(x) which is relatively easier to differentiate?
Kindly help !
 
Physics news on Phys.org
tanaygupta2000 said:
Average value of position, <x> = ∫xϕ(x) dx

This is not right.
 
tanaygupta2000 said:
Also, do I even need to find <x>, can't I equate the derivative of simply ϕ(x) to 0 to get the minima, as <x> ∝ ϕ(x) which is relatively easier to differentiate?
Kindly help !

By "minimum" value, I think they mean the greatest negative value of ##\langle x \rangle##. They do not mean ##\langle x \rangle = 0##. You could do that with ##a = 1, b = 0##, for example.

I think you have to calculate ##\langle x \rangle##, unless there is a clever trick I'm missing.
 
tanaygupta2000 said:
Also, do I even need to find <x>, can't I equate the derivative of simply ϕ(x) to 0 to get the minima, as <x> ∝ ϕ(x) which is relatively easier to differentiate?
As PeroK pointed out, your expression for <x> is wrong.
Also note that there is a difference between differentiating <x> and differentiating either ϕ(x) or its square which is the probability density: The probability density is a function of x, whereas <x> is not. <x> is a definite integral. <x> is now dependent on a and b. The statement of the problem requires you to find the values of a and b such that <x> is minimum.
 
  • Informative
Likes   Reactions: tanaygupta2000

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
Replies
7
Views
1K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K