B Minimum Velocity Required for Loop-The-Loop Problem

  • B
  • Thread starter Thread starter JackFyre
  • Start date Start date
AI Thread Summary
The discussion centers on determining the minimum velocity required for a particle to successfully complete a loop-the-loop without falling. It establishes that at the top of the loop, the particle must have a velocity greater than zero to maintain contact with the track, implying that the minimum velocity should be slightly more than 2√gr. If the particle only reaches this velocity, it will have zero kinetic energy at the top and lose contact, following a parabolic trajectory instead. The conversation highlights the importance of maintaining a non-zero normal force to ensure the particle remains on the track throughout the loop. Overall, achieving a minimum velocity above this threshold is crucial for successful completion of the loop.
JackFyre
Messages
15
Reaction score
7
A question regarding the minimum velocity required by a particle to 'do a loop' without falling-

Assuming the particle has a velocity v before reaching the loop. Then-
KE = mv²/2, at the bottom of the loop.

potential energy at the top-most point of the loop= 2mgr (2r = h)
then, by the law of conservation of energy, mv²/2 = 2mgr, and we get v = 2√gr
in this case, the particle will have zero kinetic energy at the the top of the loop, an will fall, as it has 0 velocity. However, if the initial velocity were slightly higher, say v+Δv, then the particle will have some velocity a the top of the loop.

By this logic, should not the minimum velocity for a particle to safely complete a loop be just a little more than 2√gr ?
unnamed.jpg
 
Physics news on Phys.org
In order for the particle to complete the loop, the normal force from the track onto the particle must be nonzero.

Do you see what that implies for the minimum velocity ( and hence kinetic energy ) the particle must have at the top of the loop?
 
Last edited:
  • Like
Likes Lnewqban and JackFyre
JackFyre said:
. . . by the law of conservation of energy, mv²/2 = 2mgr, and we get v = 2√gr
in this case, the particle will have zero kinetic energy at the the top of the loop, an will fall, as it has 0 velocity.
The particle will lose contact with the track before it reaches the top. When that happens, it will describe a parabolic trajectory inside the loop and land on the opposite side of the track. The kinetic energy will never go to zero. Reaching zero KE could be the case if one had a bead on a ring that is constrained to stay on the circle and the normal force is allowed to change direction from radially in to radially out.
 
Last edited:
kuruman said:
The particle will lose contact with the track before it reaches the top. When that happens, it will describe a parabolic trajectory inside the loop and land on the opposite side of the track. The kinetic energy will never go to zero. Reaching zero KE could be the case if one had a bead on a ring that is constrained to stay on the circle and the normal force is allowed to change direction from radially in to radially out.
Thanks, that clears it up!
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top