Mixed states and total wave function for three-Fermion-systems

Click For Summary
SUMMARY

The discussion centers on the total wave function for a three-Fermion system, emphasizing that the total wave function must be antisymmetric due to the fermionic nature of the particles. The speaker has calculated the total spin in the addition basis and identified the symmetric states in the j=3/2 subspace as ##\xi_s (S_1, S_2, S_3)##. The absence of antisymmetric states ##\xi_a (S_1, S_2, S_3)## complicates the formulation of the wave function, which is expressed as a combination of symmetric and antisymmetric spatial wave functions. The speaker seeks guidance on how to proceed, particularly regarding the application of Slater determinants.

PREREQUISITES
  • Understanding of quantum mechanics and fermionic systems
  • Familiarity with total spin calculations in quantum systems
  • Knowledge of symmetric and antisymmetric wave functions
  • Proficiency in using Slater determinants for multi-particle systems
NEXT STEPS
  • Study the properties of Slater determinants in quantum mechanics
  • Research the implications of antisymmetry in fermionic wave functions
  • Explore the addition of angular momentum in quantum systems
  • Investigate the role of symmetry in quantum state functions
USEFUL FOR

Physicists, quantum mechanics students, and researchers working with fermionic systems or studying the properties of multi-particle wave functions.

Like Tony Stark
Messages
182
Reaction score
6
Homework Statement
Find the total wave function (including the spatial part) of a system of three spin ##\frac{1}{2}## particles.
Relevant Equations
##\Psi = \psi_s(x_1, x_2, x_3) \xi_a (S_1, S_2, S_3) + \psi_a(x_1, x_2, x_3) \xi_s (S_1, S_2, S_3)##
I've already calculated the total spin of the system in the addition basis:

##\ket{1 \frac{3}{2} \frac{3}{2}}; \ket{1 \frac{3}{2} \frac{-3}{2}}; \ket{1 \frac{3}{2} \frac{1}{2}}; \ket{1 \frac{3}{2} \frac{-3}{2}}; \ket{0 \frac{1}{2} \frac{1}{2}}; \ket{0 \frac{1}{2} \frac{-1}{2}}; \ket{1 \frac{1}{2} \frac{1}{2}}; \ket{1 \frac{1}{2} \frac{-1}{2}}##

The states corresponding to the ##j=\frac{3}{2}##-subspace are symmetric and I'll call it ##\xi_s (S_1, S_2, S_3)##, while the other states are neither symmetric nor antisymmetric.

The total wave function must be antisymmetric since the system is fermionic. If there were antisymmetric states, the wave function would be:

##\Psi = \psi_s(x_1, x_2, x_3) \xi_a (S_1, S_2, S_3) + \psi_a(x_1, x_2, x_3) \xi_s (S_1, S_2, S_3)##

with

##\psi_s(x_1, x_2, x_3)=\frac{1}{\sqrt{3!}} [\psi_1 (x_1) \psi_2 (x_2) \psi_3 (x_3)+\psi_1 (x_1) \psi_2 (x_3) \psi_3 (x_2)+\psi_1 (x_2) \psi_2 (x_1) \psi_3 (x_3)+\psi_1 (x_2) \psi_2 (x_3) \psi_3 (x_1)+\psi_1 (x_3) \psi_2 (x_1) \psi_3 (x_2)+\psi_1 (x_3) \psi_2 (x_2) \psi_3 (x_1)]##

##\psi_a(x_1, x_2, x_3)=\frac{1}{\sqrt{3!}} [\psi_1 (x_1) \psi_2 (x_2) \psi_3 (x_3)-\psi_1 (x_1) \psi_2 (x_3) \psi_3 (x_2)-\psi_1 (x_2) \psi_2 (x_1) \psi_3 (x_3)+\psi_1 (x_2) \psi_2 (x_3) \psi_3 (x_1)+\psi_1 (x_3) \psi_2 (x_1) \psi_3 (x_2)-\psi_1 (x_3) \psi_2 (x_2) \psi_3 (x_1)]##

But we don't have ##\xi_a (S_1, S_2, S_3)## states.

What should I do?
 
Physics news on Phys.org

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
6K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
3K