Modeling an earthing switch for a High Voltage Impulse Generator

AI Thread Summary
The discussion focuses on modeling an earthing switch mechanism for a High Voltage Impulse Generator, specifically using a solenoid to lift an aluminum arm. The user has derived the motion of the armature based on angles of the linkage and is seeking assistance in formulating the equations of motion. They initially attempted to model the dynamic motion but found it overly complex, leading to a shift towards static force analysis to determine friction. The user is open to suggestions for improved modeling techniques, although they no longer require the model for their project. Overall, the conversation highlights the challenges of modeling mechanical systems and the transition from dynamic to static analysis.
Angus Fergusson
Messages
2
Reaction score
0
TL;DR Summary
Modelling a seemingly simple mechanism that is proving to be quite challenging
Hi All,

I am trying to model this mechanism for a project. It is a switch that uses a solenoid to break the contact by lifting the aluminium arm. I understand that there is most likely software out there that can do this but i would like to understand how to model this from first principals.

I have got a function for the force on the armature of the solenoid from an electromagnetic modeling software. The force on the armature is the input to the system. I want the motion of the armature, Y, as the output of the model.
So far I have found Y and its derivatives in terms of theta and beta which are the angle of the link 2 (crank) and the angle of link 3 (con rod), respectively. I have also found beta and its derivatives in terms of theta (meaning that i effectively have Y in terms of theta). After that there is the force balance on each link. I have left friction on the armature out for now, F_mu.

At the moment I am struggling with creating the equations of motion of the armature (Ydotdot = TotalForceOnArmature/MassOfArmature). Any help would be greatly appreciated

1696597204744.jpeg

1696597221316.jpeg

1696597267276.jpeg

1696597306989.jpeg

1696597332186.jpeg

Thanks in advance!
 
Engineering news on Phys.org
Welcome to PF.
Angus Fergusson said:
I have got a function for the force on the armature of the solenoid from an electromagnetic modeling software. The force on the armature is the input to the system. I want the motion of the armature, Y, as the output of the model.
I assume the white arm is the earthed contact arm, and it is attached to the elbow link.
All points in the linkage appear to travel in circular arcs, except the solenoid, which moves in a straight line.

The arc through which the white arm travels, restricts the range that must be modelled.

Are you modelling the dynamic flight of the arm as a result of the predicted solenoid force, or the static force required to move the arm through, or to hold the arm in a particular position?
 
Originally tried to do the dynamic flight but found the algebra for that to be far too complicated. I considered a state-space approach but do not have enough knowledge to pull that off. Ended up just doing a static force analysis to find the friction between the solenoid armature and the housing, which was then iterated to get the friction as a function of the position of the armature in the solenoid housing.

And yes you are correct with the mechanics of the linkage.

The model is no longer needed but I would love to hear if there is a better approach to the problem.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...

Similar threads

Back
Top