Modifying Euler-Lagrange equation to multivariable function

AI Thread Summary
The discussion focuses on deriving the multidimensional generalization of the Euler-Lagrange equation for multivariable functions in the context of field theory. The confusion arises around the correct application of rules to derive the equation, particularly regarding the variation of the action and the use of the Einstein summation convention. The action is expressed as an integral over spacetime, with the Lagrangian density depending on the field and its gradient. By performing integration by parts and assuming boundary conditions, the Euler-Lagrange equations are obtained, confirming the relationship between the variations of the action and the Lagrangian density. This process is analogous to point-particle mechanics, with the key difference being the treatment of independent variables as functions of multiple dimensions.
offscene
Messages
7
Reaction score
2
Homework Statement
Not exactly homework but I was reading through the book "QFT for the gifted amateur by Lancaster and Blundell" and I was confused about how the line just above equation 1.33 is derived (Image attached below).
Relevant Equations
Euler Lagrange equation, the principle of least action.
Screen Shot 2023-06-06 at 5.15.42 PM.png


I'm confused on how to derive the multidimensional generalization for a multivariable function. Everything makes sense here except the line,

$$
\frac{\delta S}{\delta \psi} = \frac{\partial L}{\partial \psi} - \frac{d}{dx} \frac{\partial L}{\partial(\frac{\partial \psi}{\partial x})} - \frac{d}{dt} \frac{\partial L}{\partial(\frac{\partial \psi}{\partial t})}
$$ and I'm confused about which rule I can use to derive this form of the Euler-Lagrange equation.
 
Physics news on Phys.org
In field theory your Lagrangian is given by the spaticial integral of the Lagrange density ##\mathcal{L}(\phi,\partial_{\mu} \phi)## and thus the action as an integral over spacetime
$$S[\phi]=\int \mathrm{d}^4 x \mathcal{L}(\phi,\partial_{\mu} \phi).$$
In the above example oviously the author considers a field theory in (1+1)-dimensional spacetime, but that doesn't change much. So for clarity I assume here the full case of a (1+3)-dimensional spacetime.

Now note that the gradient of the field, ##\partial_{\mu} \phi=\frac{\partial \phi}{\partial x^{\mu}}## has four components. Now you take the variation of the action wrt. the field,
$$\delta S[\phi]=S[\phi+\delta \phi]-S[\phi]=\int \mathrm{d}^4 x \left [\delta \phi \frac{\partial \mathcal{L}}{\partial \phi} + \partial_{\mu} \delta \phi \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right ].$$
Note that here the Einstein summation convention has been used, i.e., in the second term in the bracket you sum over ##\mu## from ##0## to ##3##. That's because the Lagrange density depends on all four components of the field gradient, ##\partial_{\mu} \phi##, and it's just the chain rule of multivariable calculus used here. It's pretty much the same as in point-particle mechanics, only that in this case the independent variables ##q(t)## are functions only of ##t##.

To get the Euler-Lagrange equations you just have to do an integration by parts in this 2nd term, using the assumption that ##\delta \phi## vanishes at the boundaries of the integration domain. Then you get
$$\delta S=\int \mathrm{d}^4 x \delta \phi \left [\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right ],$$
i.e.,
$$\frac{\delta S}{\delta \phi} = \frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)}.$$
If you write this out and restricting yourself to (1+1)D spacetime you get the result given in the book.
 
  • Like
Likes jbergman and offscene
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top