Modifying Euler-Lagrange equation to multivariable function

offscene
Messages
7
Reaction score
2
Homework Statement
Not exactly homework but I was reading through the book "QFT for the gifted amateur by Lancaster and Blundell" and I was confused about how the line just above equation 1.33 is derived (Image attached below).
Relevant Equations
Euler Lagrange equation, the principle of least action.
Screen Shot 2023-06-06 at 5.15.42 PM.png


I'm confused on how to derive the multidimensional generalization for a multivariable function. Everything makes sense here except the line,

$$
\frac{\delta S}{\delta \psi} = \frac{\partial L}{\partial \psi} - \frac{d}{dx} \frac{\partial L}{\partial(\frac{\partial \psi}{\partial x})} - \frac{d}{dt} \frac{\partial L}{\partial(\frac{\partial \psi}{\partial t})}
$$ and I'm confused about which rule I can use to derive this form of the Euler-Lagrange equation.
 
Physics news on Phys.org
In field theory your Lagrangian is given by the spaticial integral of the Lagrange density ##\mathcal{L}(\phi,\partial_{\mu} \phi)## and thus the action as an integral over spacetime
$$S[\phi]=\int \mathrm{d}^4 x \mathcal{L}(\phi,\partial_{\mu} \phi).$$
In the above example oviously the author considers a field theory in (1+1)-dimensional spacetime, but that doesn't change much. So for clarity I assume here the full case of a (1+3)-dimensional spacetime.

Now note that the gradient of the field, ##\partial_{\mu} \phi=\frac{\partial \phi}{\partial x^{\mu}}## has four components. Now you take the variation of the action wrt. the field,
$$\delta S[\phi]=S[\phi+\delta \phi]-S[\phi]=\int \mathrm{d}^4 x \left [\delta \phi \frac{\partial \mathcal{L}}{\partial \phi} + \partial_{\mu} \delta \phi \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right ].$$
Note that here the Einstein summation convention has been used, i.e., in the second term in the bracket you sum over ##\mu## from ##0## to ##3##. That's because the Lagrange density depends on all four components of the field gradient, ##\partial_{\mu} \phi##, and it's just the chain rule of multivariable calculus used here. It's pretty much the same as in point-particle mechanics, only that in this case the independent variables ##q(t)## are functions only of ##t##.

To get the Euler-Lagrange equations you just have to do an integration by parts in this 2nd term, using the assumption that ##\delta \phi## vanishes at the boundaries of the integration domain. Then you get
$$\delta S=\int \mathrm{d}^4 x \delta \phi \left [\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right ],$$
i.e.,
$$\frac{\delta S}{\delta \phi} = \frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)}.$$
If you write this out and restricting yourself to (1+1)D spacetime you get the result given in the book.
 
  • Like
Likes jbergman and offscene
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top