A Molar heat capacity of CO2 is too high. Why?

Click For Summary
The molar heat capacity of CO2 at high temperatures is expected to be Cp = 15/2 R, accounting for its translational, rotational, and vibrational degrees of freedom. However, experimental values are observed to be higher, particularly at elevated temperatures. A suggestion that bending vibrations contribute an additional rotational degree of freedom is incorrect; instead, bending reduces the vibrational degrees of freedom and can lower Cp. The treatment of vibrations as harmonic oscillators is an approximation that becomes less accurate at higher temperatures due to increased anharmonicity. Overall, the discrepancies in heat capacity values can be attributed to these complexities in molecular behavior.
Philip Koeck
Gold Member
Messages
801
Reaction score
229
At very high temperatures CO2 should have Cp = 15/2 R, since there are 3 translational, 2 rotational and 4 vibrational degrees of freedom.
Experimental values are a bit higher than that, at least according to a figure I found on the internet.
Is that correct? And what is the explanation?
A student suggested that when the molecule vibrates in the bending mode it gets an additional rotational degree of freedom, since it is bent most of the time.
Is that a sensible explanation?
 
Physics news on Phys.org
Philip Koeck said:
Experimental values are a bit higher than that, at least according to a figure I found on the internet.
Is that correct?
See
https://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=1&Type=JANAFG&Plot=on#JANAFG

At 3000 K, it is pretty much 15/2 R. It goes to higher values at higher temperatures.

Philip Koeck said:
A student suggested that when the molecule vibrates in the bending mode it gets an additional rotational degree of freedom, since it is bent most of the time.
Is that a sensible explanation?
A molecule cannot gain degrees of freedom. A linear triatomic has 2 rotational degrees of freedom, but gains one has an additional vibrational d.o.f. because bending is degenerate. If the molecule is bent, then you would loose a vibrational d.o.f. and gain a rotational one, which would actually reduce Cp, since the vibrational mode contributes 2 quadratic d.o.f. to the 1 rotational d.o.f. (see the Cp values for water).

Treating vibrations has harmonic oscillators is an approximation. The anharmonic character increases as vibrational excitation goes up, hence the approximation ##C_p = (f/2 + 1) R## is less good at higher T.

[Edit: Changed the language a bit to make it more consistent.]
 
Last edited:
  • Like
Likes Spinnor, Twigg and Philip Koeck
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K