Moment of Inertia of a 4 rod system

Click For Summary

Homework Help Overview

The discussion revolves around calculating the moment of inertia (MOI) for a system of four rods arranged in a square configuration. Participants are referencing known formulas for various shapes, such as discs and rings, and are attempting to apply similar principles to the rod system.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants are examining the calculations related to the moment of inertia for the rod system, questioning the accuracy of the hand-written calculations, and discussing the formulas used for different axes. There is an exploration of how the MOI is derived and whether the calculations align with known results for similar shapes.

Discussion Status

Some participants have provided calculations and expressed confidence in their results, while others are seeking clarification on the methodology and assumptions involved. There appears to be productive dialogue regarding the simplification of results and the relationship between the MOI about different axes.

Contextual Notes

Participants are working with potentially messy hand-written calculations and are referencing a booklet for solutions, which may introduce discrepancies in understanding. The discussion includes checking assumptions related to the arrangement of the rods and their contributions to the overall moment of inertia.

Aurelius120
Messages
269
Reaction score
24
Homework Statement
Calculate the Moment of Inertia of each and determine the greatest:
Relevant Equations
MOI=mr2
This was the question
20211125_163051.jpg

20211125_163147.jpg

(The line below is probably some translation of upper line in different language)

For disc it was ma^2/2
For ring it was ma^2
For square lamina it was 2ma^2/3
For rods
It was different
20211125_163250.jpg

Please explain

Thank You🙏
 
Physics news on Phys.org
I don't know what was being calculated by this equation
1637853924455.png


The hand-written calculation is a little messy and hard to follow, but it looks correct for the 4 rods making a square.
 
It probably calculated the MOI of the system (because it was the solution given in the booklet)

Also my MOI came out to be
(m/4)Ă—(8a^2)Ă·12 + 2Ă—(m/4)Ă—a^2
[About x and y axes]

&&

(ma^2)+(ma^2)/3


{About z axis}
 
Aurelius120 said:
Also my MOI came out to be
(m/4)Ă—(8a^2)Ă·12 + 2Ă—(m/4)Ă—a^2
[About x and y axes]
Ok, you are saying that ##I_{\rm x\, axis} = I_{\rm y\, axis} = \frac{m}{4} \frac{8a^2}{12} + 2 \frac{m}{4}a^2##
That looks correct.
It would be nice to simplify the result.
Aurelius120 said:
&&

(ma^2)+(ma^2)/3


{About z axis}
Here you are using ##I_{\rm z\,axis} = I_{\rm x\,axis}+I_{\rm y\,axis} = 2I_{\rm x\,axis} = ma^2 + \frac{ma^2}{3}##.
This looks correct. Of course you can simplify this result to just one term.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
8
Views
14K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 3 ·
Replies
3
Views
2K