Moment of Inertia of a 4 rod system

AI Thread Summary
The discussion centers on calculating the moment of inertia (MOI) for a system of four rods arranged in a square. The calculations provided indicate that the MOI for the x and y axes is correctly derived as (m/4)(8a^2)/12 + 2(m/4)a^2. For the z axis, the MOI is expressed as I_z = I_x + I_y, leading to a simplified form of ma^2 + (ma^2)/3. Participants confirm the correctness of these calculations and suggest further simplification of the results. The focus remains on accurately determining the MOI for this specific rod configuration.
Aurelius120
Messages
269
Reaction score
24
Homework Statement
Calculate the Moment of Inertia of each and determine the greatest:
Relevant Equations
MOI=mr2
This was the question
20211125_163051.jpg

20211125_163147.jpg

(The line below is probably some translation of upper line in different language)

For disc it was ma^2/2
For ring it was ma^2
For square lamina it was 2ma^2/3
For rods
It was different
20211125_163250.jpg

Please explain

Thank You🙏
 
Physics news on Phys.org
I don't know what was being calculated by this equation
1637853924455.png


The hand-written calculation is a little messy and hard to follow, but it looks correct for the 4 rods making a square.
 
It probably calculated the MOI of the system (because it was the solution given in the booklet)

Also my MOI came out to be
(m/4)Ă—(8a^2)Ă·12 + 2Ă—(m/4)Ă—a^2
[About x and y axes]

&&

(ma^2)+(ma^2)/3


{About z axis}
 
Aurelius120 said:
Also my MOI came out to be
(m/4)Ă—(8a^2)Ă·12 + 2Ă—(m/4)Ă—a^2
[About x and y axes]
Ok, you are saying that ##I_{\rm x\, axis} = I_{\rm y\, axis} = \frac{m}{4} \frac{8a^2}{12} + 2 \frac{m}{4}a^2##
That looks correct.
It would be nice to simplify the result.
Aurelius120 said:
&&

(ma^2)+(ma^2)/3


{About z axis}
Here you are using ##I_{\rm z\,axis} = I_{\rm x\,axis}+I_{\rm y\,axis} = 2I_{\rm x\,axis} = ma^2 + \frac{ma^2}{3}##.
This looks correct. Of course you can simplify this result to just one term.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top