MHB Moment of Inertia: Use Parallel Axis Theorem

Click For Summary
To determine the moment of inertia of a uniform disc about the x-axis using the parallel axis theorem, one must first calculate the moment of inertia about the center of the disc. The parallel axis theorem states that the moment of inertia about any axis parallel to one through the center of mass can be found by adding the moment of inertia about the center of mass to the product of the mass and the square of the distance between the two axes. For a uniform disc, the moment of inertia about the center is (1/2)MR², and the distance from the center to the edge is R. Therefore, the moment of inertia about the x-axis is (1/2)MR² + MR², resulting in (3/2)MR².
Peter Gikonyo
Messages
1
Reaction score
0
Use a parallel axis theorem to determine the moment of inertia of a uniform disc of mass M and radius R about the x-axis perpendicular to the plane of the disc and passing at the edge of the disc.
 
Mathematics news on Phys.org
Hello and welcome to MHB! :D

We ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far?
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 28 ·
Replies
28
Views
1K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K