Momentum - Impulse collision to find initial speeds and directions

AI Thread Summary
The discussion revolves around the confusion regarding the direction of impulse in a collision problem involving two particles. Participants highlight issues with the sign conventions used in the official answer, noting that the author incorrectly assigned positive directions based on the impulse's direction rather than the common final velocity direction. A more logical approach is suggested, using the final velocities as a reference point for determining impulse signs. The calculations show that particle Q must have had a negative momentum before the collision, while particle P had a positive momentum after the collision. The consensus emphasizes the importance of consistent sign conventions in solving momentum-related problems.
dahoom102
Messages
12
Reaction score
2
Homework Statement
Two particles P and Q of masses 3 kg and 2 kg respectively are moving along the same straight line on a smooth horizontal surface. The particles collide. After the collision both the particles are moving in the same direction, the speed of P is 1 m/s and the speed of Q is 1.5 m/s. The magnitude of the impulse of P on Q is 9N s. Find:
a) Speed and direction of P before the collision
b) Speed and direction of Q before the collision
Relevant Equations
I=m(v-u)
Pf=Pi
Hi
I've tried solving this question but it seems that I flipped the direction of the impulse, what did I interpret wrong? the question didn't give any clue on their direction before so I couldn't infer the direction of the impulse. It also just gave me the magnitude without the direction. I would appreciate if you could help me know why is my diagram wrong.
Screenshots.jpeg

Screenshot_32.png
 
  • Like
Likes Delta2
Physics news on Phys.org
dahoom102 said:
why is my diagram wrong.
If after two particles collide they are moving in the same direction, which is moving faster, the one in the lead or the one behind?
 
  • Like
Likes dahoom102
haruspex said:
If after two particles collide they are moving in the same direction, which is moving faster, the one in the lead or the one behind?
Oh, i just realized! how couldn't I be logical in the first place ;(. Thanks a ton haruspex!
 
Your equations would yield the same results as those of book (with the roles of u,v swapped) , if you change the sign of impulse in each one, that is if you had the equations $$-9=3(1-v)$$$$9=2(1.5-u)$$.

However I am confused too why we should consider the impulse as negative in the first equation with v , and as positive in the second equation with u.
 
Can I add a few words as I can see some sources of confusion.

In the official answer (shown in Post #1), it looks like the author has mixed sign conventions:
- for P, they have taken the positive direction to be same as the direction of the impulse acting on P (to the left);
- for Q, they have taken the positive direction to be same as the direction of the impulse acting on Q (to the right).

Very silly and/or a bit of a bodge (IMO)!

(Also note, in the official answer, ‘u’ is P’s initial velocity and ‘v’ is Q’s initial velocity. That seems logical - based on alphabetical ordering.)

A more sensible approach to the sign convention would be to use the known common direction of the final velocities as the reference. Take it to be the +x direction (to the right).

The final velocities of P and Q are then both positive (+1m/s and +1.5m/s).

It is not hard to deduce that the impulse of Q on P must have been negative (-9Ns) and the impulse of P on Q must have been positive (+9Ns).

We then get:
For P: -9 = 3(1-u) ⇒ u = 4m/s
For Q: +9 = 2(1.5 – v) ⇒ v = -3m/s
 
  • Like
Likes PeroK
@Steve4Physics, are you suggesting the author wasn't minding their P's and Q's?
 
Last edited:
  • Like
  • Haha
Likes Steve4Physics and haruspex
Following the book's bad example and ignoring units, I would say.

Q has momentum ##+3## after the collision and was given an impulse of ##+9## so must have had a momentum of ##-6## before the collision.

P has momentum ##3## after an impulse of ##-9## so must have had ##12##.

It seems logical to me use momentum rather than velocity. And then get the velocity from the momentum.
 
  • Like
Likes bob012345 and Steve4Physics
Back
Top