Monic polynomial of the lowest possible degree

  • Thread starter Thread starter 53Mark53
  • Start date Start date
  • Tags Tags
    Degree Polynomial
Click For Summary

Homework Help Overview

The discussion revolves around finding a real, monic polynomial of the lowest possible degree that has specific complex zeros: −1−2i, −2i, and i. The variable used is z.

Discussion Character

  • Exploratory, Assumption checking

Approaches and Questions Raised

  • Participants discuss the method of expanding the polynomial based on its zeros and question how to ensure the polynomial remains real. There is an exploration of the role of complex conjugates in forming a real polynomial.

Discussion Status

Participants are actively engaging with the problem, raising questions about the necessity of including conjugate pairs of the complex roots to achieve a real polynomial. Some hints have been provided regarding the treatment of the imaginary roots.

Contextual Notes

There is an emphasis on the requirement for the polynomial to be real, which raises questions about the handling of complex roots, particularly when no two roots form a conjugate pair.

53Mark53
Messages
52
Reaction score
0

Homework Statement



A monic polynomial is a polynomial which has leading coefficient 1. Find the real, monic polynomial of the lowest possible degree which has zeros −1−2i,−2i and i. Use z as your variable.

The Attempt at a Solution


[/B]
Would I just expand the zeros giving me

(z+1+2i)(z+2i)(z-i)

z^3+(1+3*I)*z^2+I*x+I*4+2
 
Physics news on Phys.org
53Mark53 said:

Homework Statement



A monic polynomial is a polynomial which has leading coefficient 1. Find the real, monic polynomial of the lowest possible degree which has zeros −1−2i,−2i and i. Use z as your variable.

The Attempt at a Solution


[/B]
Would I just expand the zeros giving me

(z+1+2i)(z+2i)(z-i)

z^3+(1+3*I)*z^2+I*x+I*4+2
Don't forget: It's a real polynomial.
 
SammyS said:
Don't forget: It's a real polynomial.
how would I make it real?
 
53Mark53 said:
how would I make it real?
Hint: what happened to the conjugates of the original roots?
 
SteamKing said:
Hint: what happened to the conjugates of the original roots?
SteamKing said:
Hint: what happened to the conjugates of the original roots?

Does that mean that I have to square the imaginary roots?
 
53Mark53 said:
Does that mean that I have to square the imaginary roots?
What is the conjugate of the complex number, a + bi?
 
@53Mark53 ,
Here's what you said in a previous thread:
53Mark53 said:

Homework Statement


p(x) = x^3 − x^2 + ax + b is a real polynomial with 1 + i as a zero, find a and b and find all of the real zeros of p(x).

The Attempt at a Solution


[/B]
1-i is also a zero as it is the conjugate of 1+i
The same applies here, but now you have 3 complex roots, no two of which form a conjugate pair.
 
SammyS said:
@53Mark53 ,
Here's what you said in a previous thread:

The same applies here, but now you have 3 complex roots, no two of which form a conjugate pair.
Thanks I got the right answer by using conjugate pairs
 

Similar threads

Replies
5
Views
2K
Replies
4
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 33 ·
2
Replies
33
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K