MHB More Convergence & Divergence with sequences

shamieh
Messages
538
Reaction score
0
Determine whether the sequence converges or diverges, if it converges fidn the limit.

$$a_n = n \sin(1/n)$$

so Can I just do this:

$$n * \sin(1/n)$$ is indeterminate form

so i can use lopitals

so:

$$1 * \cos(1/x) = 1 * 1 = 1$$

converges to 1?
 
Physics news on Phys.org
shamieh said:
Determine whether the sequence converges or diverges, if it converges fidn the limit.

$$a_n = n \sin(1/n)$$

so Can I just do this:

$$n * \sin(1/n)$$ is indeterminate form

so i can use lopitals

so:

$$1 * \cos(1/x) = 1 * 1 = 1$$

converges to 1?

Your result is correct... however, if You want to use continuous functions, it is better to set $\displaystyle x=\frac{1}{n}$ and the limit becomes $\displaystyle \lim_{x \rightarrow 0} \frac{\sin x}{x}=1$. This is a 'fundamental limit' and the l'Hopital rule shouldn't be used...

Kind regards

$\chi$ $\sigma$
 

Similar threads

Back
Top