MHB More Infinite Series Problems to Solve

Click For Summary
The discussion presents several infinite series problems, including \( \sum_{n=1}^{\infty}\frac{1}{n^4} \) and \( \sum_{n=1}^{\infty}\frac{(n+1) \cdot (n+1)!}{(n+5)!} \). The first series is evaluated to yield \( \zeta(4) = \frac{\pi^4}{90} \), utilizing the Bernoulli number \( B_4 \). The second series is approached through partial fractions and limits, ultimately converging to \( \frac{7}{360} \). Various methods, including Fourier theory and the Gamma function, are discussed for solving these series. The thread emphasizes the diverse techniques available for tackling infinite series problems.
DrunkenOldFool
Messages
20
Reaction score
0
It looks like you guys love to solve infinite series problems. Here are a few more

\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}\)

\( \displaystyle \sum_{n=1}^{\infty}\frac{(n+1) \cdot (n+1)!}{(n+5)!}\)
 
Mathematics news on Phys.org
\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}\)

\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}=\zeta(4)=(-1)^2 \frac{B_4 (2\pi)^{4}}{2 \times 4!}=\frac{\pi^4}{90}\)

where $B_4$ is a Bernoulli Number.
 
DrunkenOldFool said:
\( \displaystyle \sum_{n=1}^{\infty}\frac{(n+1) \cdot (n+1)!}{(n+5)!}\)
$\displaystyle \sum_{ n \ge 1}\frac{(n+1)(n+1)!}{(n+5)!} = \lim_{ k \to \infty}\sum_{1 \le n \le k}\frac{(n+1)(n+1)!}{(n+5)(n+4)(n+3)(n+2)(n+1)!} = \lim_{ k \to \infty}\sum_{1 \le n \le k}\frac{(n+1)}{(n+5)(n+4)(n+3)(n+2)}$

By writing the summand in the partial fractions form and denoting the partial sum by $S_{k}$, we find that$\begin{aligned} S_{k} = \frac{2}{3}\sum_{0 \le n \le k}\frac{1}{n+5}-\frac{3}{2}\sum_{0 \le n \le k}\frac{1}{n+4}+\sum_{0 \le n \le k}\frac{1}{n+3}-\frac{1}{6}\sum_{0 \le n \le k}\frac{1}{n+2}\end{aligned}$Mapping $n \mapsto n-1$ (replacing $n$ with $n-1$ basically) for the first and the third sum then we find$\begin{aligned} S_{k} & = \frac{2}{3}\sum_{1 \le n-1 \le k}\frac{1}{n+4}-\frac{3}{2}\sum_{1 \le n \le k}\frac{1}{n+4}+\sum_{1 \le n-1 \le k}\frac{1}{n+2}-\frac{1}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3}\sum_{2 \le n \le k+1}\frac{1}{n+4}-\frac{3}{2}\sum_{1 \le n \le k}\frac{1}{n+4}+\sum_{2 \le n \le k+1}\frac{1}{n+2}-\frac{1}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}-\frac{2}{15}+\frac{2}{3} \sum_{1 \le n \le k}\frac{1}{n+4}-\frac{3}{2}\sum_{1 \le n \le k}\frac{1}{n+4}+\frac{1}{k+3}-\frac{1}{3}+\sum_{1 \le n \le k}\frac{1}{n+2}-\frac{1}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}-\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+4}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}-\frac{5}{6}\sum_{1 \le n-2 \le k}\frac{1}{n+2}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}-\frac{5}{6}\sum_{3 \le n \le k+2}\frac{1}{n+2}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}+\frac{35}{72}-\frac{5}{6(k+4)}-\frac{5}{6(k+3)}-\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{5}{6(k+4)}-\frac{5}{6(k+3)}+\frac{7}{360}\end{aligned}$Where we of coursed mapped $n \mapsto n-2$ for the sum on the left in the fifth line. Now it's obvious that $\displaystyle \lim_{ k \to \infty}S_{k} = \frac{7}{360}$ and that's value of your sum.
 
Last edited:
sbhatnagar said:
\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}=\zeta(4)=(-1)^2 \frac{B_4 (2\pi)^{4}}{2 \times 4!}=\frac{\pi^4}{90}\)

where $B_4$ is a Bernoulli Number.
Another way to do this is to use Fourier theory on the function $f(x)=x^2\;\;(x\in[-\pi,\pi])$. Its Fourier coefficients are given by $\hat{f}(0)=\pi^2/3$, $\hat{f}(n) = 2(-1)^n/n^2\;(n\ne0).$ The result then follows by applying Parseval's theorem.
 
Whenever I see factorials, I take advantage of the Gamma and Beta function, so $\displaystyle\frac{(n+1)(n+1)!}{(n+5)!}=\frac{1}{\Gamma (4)}\cdot \frac{(n+1)\Gamma (n+2)\Gamma (4)}{\Gamma (n+6)}=\frac{n+1}{\Gamma (4)}\cdot \beta (n,4)
,$ so the series becomes $\displaystyle\frac{1}{\Gamma (4)}\sum\limits_{n=1}^{\infty }{(n+1)\int_{0}^{1}{{{t}^{n+1}}{{(1-t)}^{3}}\,dt}}=\frac{1}{\Gamma (4)}\int_{0}^{1}{t{{(1-t)}^{3}}\sum\limits_{n=1}^{\infty }{(n+1){{t}^{n}}}\,dt}$ and then the series equals $\displaystyle\frac{1}{\Gamma (4)}\int_{0}^{1}{t\left( (1-t)-{{(1-t)}^{3}} \right)\,dt}$ which achieves the same value as shown.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
20
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K