MHB More Infinite Series Problems to Solve

DrunkenOldFool
Messages
20
Reaction score
0
It looks like you guys love to solve infinite series problems. Here are a few more

\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}\)

\( \displaystyle \sum_{n=1}^{\infty}\frac{(n+1) \cdot (n+1)!}{(n+5)!}\)
 
Mathematics news on Phys.org
\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}\)

\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}=\zeta(4)=(-1)^2 \frac{B_4 (2\pi)^{4}}{2 \times 4!}=\frac{\pi^4}{90}\)

where $B_4$ is a Bernoulli Number.
 
DrunkenOldFool said:
\( \displaystyle \sum_{n=1}^{\infty}\frac{(n+1) \cdot (n+1)!}{(n+5)!}\)
$\displaystyle \sum_{ n \ge 1}\frac{(n+1)(n+1)!}{(n+5)!} = \lim_{ k \to \infty}\sum_{1 \le n \le k}\frac{(n+1)(n+1)!}{(n+5)(n+4)(n+3)(n+2)(n+1)!} = \lim_{ k \to \infty}\sum_{1 \le n \le k}\frac{(n+1)}{(n+5)(n+4)(n+3)(n+2)}$

By writing the summand in the partial fractions form and denoting the partial sum by $S_{k}$, we find that$\begin{aligned} S_{k} = \frac{2}{3}\sum_{0 \le n \le k}\frac{1}{n+5}-\frac{3}{2}\sum_{0 \le n \le k}\frac{1}{n+4}+\sum_{0 \le n \le k}\frac{1}{n+3}-\frac{1}{6}\sum_{0 \le n \le k}\frac{1}{n+2}\end{aligned}$Mapping $n \mapsto n-1$ (replacing $n$ with $n-1$ basically) for the first and the third sum then we find$\begin{aligned} S_{k} & = \frac{2}{3}\sum_{1 \le n-1 \le k}\frac{1}{n+4}-\frac{3}{2}\sum_{1 \le n \le k}\frac{1}{n+4}+\sum_{1 \le n-1 \le k}\frac{1}{n+2}-\frac{1}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3}\sum_{2 \le n \le k+1}\frac{1}{n+4}-\frac{3}{2}\sum_{1 \le n \le k}\frac{1}{n+4}+\sum_{2 \le n \le k+1}\frac{1}{n+2}-\frac{1}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}-\frac{2}{15}+\frac{2}{3} \sum_{1 \le n \le k}\frac{1}{n+4}-\frac{3}{2}\sum_{1 \le n \le k}\frac{1}{n+4}+\frac{1}{k+3}-\frac{1}{3}+\sum_{1 \le n \le k}\frac{1}{n+2}-\frac{1}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}-\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+4}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}-\frac{5}{6}\sum_{1 \le n-2 \le k}\frac{1}{n+2}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}-\frac{5}{6}\sum_{3 \le n \le k+2}\frac{1}{n+2}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}+\frac{35}{72}-\frac{5}{6(k+4)}-\frac{5}{6(k+3)}-\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{5}{6(k+4)}-\frac{5}{6(k+3)}+\frac{7}{360}\end{aligned}$Where we of coursed mapped $n \mapsto n-2$ for the sum on the left in the fifth line. Now it's obvious that $\displaystyle \lim_{ k \to \infty}S_{k} = \frac{7}{360}$ and that's value of your sum.
 
Last edited:
sbhatnagar said:
\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}=\zeta(4)=(-1)^2 \frac{B_4 (2\pi)^{4}}{2 \times 4!}=\frac{\pi^4}{90}\)

where $B_4$ is a Bernoulli Number.
Another way to do this is to use Fourier theory on the function $f(x)=x^2\;\;(x\in[-\pi,\pi])$. Its Fourier coefficients are given by $\hat{f}(0)=\pi^2/3$, $\hat{f}(n) = 2(-1)^n/n^2\;(n\ne0).$ The result then follows by applying Parseval's theorem.
 
Whenever I see factorials, I take advantage of the Gamma and Beta function, so $\displaystyle\frac{(n+1)(n+1)!}{(n+5)!}=\frac{1}{\Gamma (4)}\cdot \frac{(n+1)\Gamma (n+2)\Gamma (4)}{\Gamma (n+6)}=\frac{n+1}{\Gamma (4)}\cdot \beta (n,4)
,$ so the series becomes $\displaystyle\frac{1}{\Gamma (4)}\sum\limits_{n=1}^{\infty }{(n+1)\int_{0}^{1}{{{t}^{n+1}}{{(1-t)}^{3}}\,dt}}=\frac{1}{\Gamma (4)}\int_{0}^{1}{t{{(1-t)}^{3}}\sum\limits_{n=1}^{\infty }{(n+1){{t}^{n}}}\,dt}$ and then the series equals $\displaystyle\frac{1}{\Gamma (4)}\int_{0}^{1}{t\left( (1-t)-{{(1-t)}^{3}} \right)\,dt}$ which achieves the same value as shown.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
7
Views
2K
Replies
2
Views
3K
Replies
4
Views
2K
Replies
2
Views
2K
Replies
5
Views
2K
Replies
12
Views
1K
Back
Top