More Infinite Series Problems to Solve

Click For Summary
SUMMARY

The discussion focuses on solving infinite series problems, specifically the series \( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4} \) and \( \displaystyle \sum_{n=1}^{\infty}\frac{(n+1) \cdot (n+1)!}{(n+5)!} \). The first series converges to \( \zeta(4) = \frac{\pi^4}{90} \), utilizing Bernoulli numbers. The second series is evaluated using partial fractions and limits, ultimately yielding a result of \( \frac{7}{360} \). Fourier theory and the Gamma and Beta functions are also employed for alternative solutions.

PREREQUISITES
  • Understanding of infinite series convergence
  • Familiarity with Bernoulli numbers
  • Knowledge of Fourier theory and Parseval's theorem
  • Proficiency in Gamma and Beta functions
NEXT STEPS
  • Study the properties of Bernoulli numbers and their applications in series
  • Learn about Parseval's theorem and its implications in Fourier analysis
  • Explore the Gamma and Beta functions in depth
  • Practice solving various infinite series using partial fractions
USEFUL FOR

Mathematicians, students studying advanced calculus, and anyone interested in the analysis of infinite series and their convergence properties.

DrunkenOldFool
Messages
20
Reaction score
0
It looks like you guys love to solve infinite series problems. Here are a few more

\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}\)

\( \displaystyle \sum_{n=1}^{\infty}\frac{(n+1) \cdot (n+1)!}{(n+5)!}\)
 
Physics news on Phys.org
\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}\)

\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}=\zeta(4)=(-1)^2 \frac{B_4 (2\pi)^{4}}{2 \times 4!}=\frac{\pi^4}{90}\)

where $B_4$ is a Bernoulli Number.
 
DrunkenOldFool said:
\( \displaystyle \sum_{n=1}^{\infty}\frac{(n+1) \cdot (n+1)!}{(n+5)!}\)
$\displaystyle \sum_{ n \ge 1}\frac{(n+1)(n+1)!}{(n+5)!} = \lim_{ k \to \infty}\sum_{1 \le n \le k}\frac{(n+1)(n+1)!}{(n+5)(n+4)(n+3)(n+2)(n+1)!} = \lim_{ k \to \infty}\sum_{1 \le n \le k}\frac{(n+1)}{(n+5)(n+4)(n+3)(n+2)}$

By writing the summand in the partial fractions form and denoting the partial sum by $S_{k}$, we find that$\begin{aligned} S_{k} = \frac{2}{3}\sum_{0 \le n \le k}\frac{1}{n+5}-\frac{3}{2}\sum_{0 \le n \le k}\frac{1}{n+4}+\sum_{0 \le n \le k}\frac{1}{n+3}-\frac{1}{6}\sum_{0 \le n \le k}\frac{1}{n+2}\end{aligned}$Mapping $n \mapsto n-1$ (replacing $n$ with $n-1$ basically) for the first and the third sum then we find$\begin{aligned} S_{k} & = \frac{2}{3}\sum_{1 \le n-1 \le k}\frac{1}{n+4}-\frac{3}{2}\sum_{1 \le n \le k}\frac{1}{n+4}+\sum_{1 \le n-1 \le k}\frac{1}{n+2}-\frac{1}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3}\sum_{2 \le n \le k+1}\frac{1}{n+4}-\frac{3}{2}\sum_{1 \le n \le k}\frac{1}{n+4}+\sum_{2 \le n \le k+1}\frac{1}{n+2}-\frac{1}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}-\frac{2}{15}+\frac{2}{3} \sum_{1 \le n \le k}\frac{1}{n+4}-\frac{3}{2}\sum_{1 \le n \le k}\frac{1}{n+4}+\frac{1}{k+3}-\frac{1}{3}+\sum_{1 \le n \le k}\frac{1}{n+2}-\frac{1}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}-\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+4}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}-\frac{5}{6}\sum_{1 \le n-2 \le k}\frac{1}{n+2}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}-\frac{5}{6}\sum_{3 \le n \le k+2}\frac{1}{n+2}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}+\frac{35}{72}-\frac{5}{6(k+4)}-\frac{5}{6(k+3)}-\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{5}{6(k+4)}-\frac{5}{6(k+3)}+\frac{7}{360}\end{aligned}$Where we of coursed mapped $n \mapsto n-2$ for the sum on the left in the fifth line. Now it's obvious that $\displaystyle \lim_{ k \to \infty}S_{k} = \frac{7}{360}$ and that's value of your sum.
 
Last edited:
sbhatnagar said:
\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}=\zeta(4)=(-1)^2 \frac{B_4 (2\pi)^{4}}{2 \times 4!}=\frac{\pi^4}{90}\)

where $B_4$ is a Bernoulli Number.
Another way to do this is to use Fourier theory on the function $f(x)=x^2\;\;(x\in[-\pi,\pi])$. Its Fourier coefficients are given by $\hat{f}(0)=\pi^2/3$, $\hat{f}(n) = 2(-1)^n/n^2\;(n\ne0).$ The result then follows by applying Parseval's theorem.
 
Whenever I see factorials, I take advantage of the Gamma and Beta function, so $\displaystyle\frac{(n+1)(n+1)!}{(n+5)!}=\frac{1}{\Gamma (4)}\cdot \frac{(n+1)\Gamma (n+2)\Gamma (4)}{\Gamma (n+6)}=\frac{n+1}{\Gamma (4)}\cdot \beta (n,4)
,$ so the series becomes $\displaystyle\frac{1}{\Gamma (4)}\sum\limits_{n=1}^{\infty }{(n+1)\int_{0}^{1}{{{t}^{n+1}}{{(1-t)}^{3}}\,dt}}=\frac{1}{\Gamma (4)}\int_{0}^{1}{t{{(1-t)}^{3}}\sum\limits_{n=1}^{\infty }{(n+1){{t}^{n}}}\,dt}$ and then the series equals $\displaystyle\frac{1}{\Gamma (4)}\int_{0}^{1}{t\left( (1-t)-{{(1-t)}^{3}} \right)\,dt}$ which achieves the same value as shown.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K