More Infinite Series Problems to Solve

Click For Summary

Discussion Overview

The thread discusses various infinite series problems, specifically focusing on the series \( \sum_{n=1}^{\infty}\frac{1}{n^4} \) and \( \sum_{n=1}^{\infty}\frac{(n+1) \cdot (n+1)!}{(n+5)!} \). Participants explore different methods and approaches to evaluate these series, including mathematical identities and techniques from Fourier theory and the Gamma and Beta functions.

Discussion Character

  • Exploratory
  • Mathematical reasoning

Main Points Raised

  • One participant states that \( \sum_{n=1}^{\infty}\frac{1}{n^4} \) can be expressed as \( \zeta(4) = \frac{\pi^4}{90} \) using Bernoulli numbers.
  • Another participant presents a detailed evaluation of \( \sum_{n=1}^{\infty}\frac{(n+1) \cdot (n+1)!}{(n+5)!} \) using limits and partial fractions, concluding that the limit equals \( \frac{7}{360} \).
  • A different approach to \( \sum_{n=1}^{\infty}\frac{1}{n^4} \) is introduced, involving Fourier theory and Parseval's theorem, yielding the same result as the previous claim.
  • Another participant suggests using the Gamma and Beta functions to evaluate the series involving factorials, leading to an integral representation that achieves the same value.

Areas of Agreement / Disagreement

Participants present multiple methods to evaluate the series, and while some results appear consistent, there is no explicit consensus on the approaches or the interpretations of the results. Disagreements on methods and interpretations remain evident.

Contextual Notes

Some mathematical steps and assumptions in the evaluations are not fully resolved, and the dependence on specific mathematical identities and theorems is noted but not clarified in detail.

DrunkenOldFool
Messages
20
Reaction score
0
It looks like you guys love to solve infinite series problems. Here are a few more

\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}\)

\( \displaystyle \sum_{n=1}^{\infty}\frac{(n+1) \cdot (n+1)!}{(n+5)!}\)
 
Physics news on Phys.org
\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}\)

\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}=\zeta(4)=(-1)^2 \frac{B_4 (2\pi)^{4}}{2 \times 4!}=\frac{\pi^4}{90}\)

where $B_4$ is a Bernoulli Number.
 
DrunkenOldFool said:
\( \displaystyle \sum_{n=1}^{\infty}\frac{(n+1) \cdot (n+1)!}{(n+5)!}\)
$\displaystyle \sum_{ n \ge 1}\frac{(n+1)(n+1)!}{(n+5)!} = \lim_{ k \to \infty}\sum_{1 \le n \le k}\frac{(n+1)(n+1)!}{(n+5)(n+4)(n+3)(n+2)(n+1)!} = \lim_{ k \to \infty}\sum_{1 \le n \le k}\frac{(n+1)}{(n+5)(n+4)(n+3)(n+2)}$

By writing the summand in the partial fractions form and denoting the partial sum by $S_{k}$, we find that$\begin{aligned} S_{k} = \frac{2}{3}\sum_{0 \le n \le k}\frac{1}{n+5}-\frac{3}{2}\sum_{0 \le n \le k}\frac{1}{n+4}+\sum_{0 \le n \le k}\frac{1}{n+3}-\frac{1}{6}\sum_{0 \le n \le k}\frac{1}{n+2}\end{aligned}$Mapping $n \mapsto n-1$ (replacing $n$ with $n-1$ basically) for the first and the third sum then we find$\begin{aligned} S_{k} & = \frac{2}{3}\sum_{1 \le n-1 \le k}\frac{1}{n+4}-\frac{3}{2}\sum_{1 \le n \le k}\frac{1}{n+4}+\sum_{1 \le n-1 \le k}\frac{1}{n+2}-\frac{1}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3}\sum_{2 \le n \le k+1}\frac{1}{n+4}-\frac{3}{2}\sum_{1 \le n \le k}\frac{1}{n+4}+\sum_{2 \le n \le k+1}\frac{1}{n+2}-\frac{1}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}-\frac{2}{15}+\frac{2}{3} \sum_{1 \le n \le k}\frac{1}{n+4}-\frac{3}{2}\sum_{1 \le n \le k}\frac{1}{n+4}+\frac{1}{k+3}-\frac{1}{3}+\sum_{1 \le n \le k}\frac{1}{n+2}-\frac{1}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}-\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+4}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}-\frac{5}{6}\sum_{1 \le n-2 \le k}\frac{1}{n+2}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}-\frac{5}{6}\sum_{3 \le n \le k+2}\frac{1}{n+2}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{7}{15}+\frac{35}{72}-\frac{5}{6(k+4)}-\frac{5}{6(k+3)}-\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2}+\frac{5}{6}\sum_{1 \le n \le k}\frac{1}{n+2} \\& = \frac{2}{3(k+4)}+\frac{1}{k+3}-\frac{5}{6(k+4)}-\frac{5}{6(k+3)}+\frac{7}{360}\end{aligned}$Where we of coursed mapped $n \mapsto n-2$ for the sum on the left in the fifth line. Now it's obvious that $\displaystyle \lim_{ k \to \infty}S_{k} = \frac{7}{360}$ and that's value of your sum.
 
Last edited:
sbhatnagar said:
\( \displaystyle \sum_{n=1}^{\infty}\frac{1}{n^4}=\zeta(4)=(-1)^2 \frac{B_4 (2\pi)^{4}}{2 \times 4!}=\frac{\pi^4}{90}\)

where $B_4$ is a Bernoulli Number.
Another way to do this is to use Fourier theory on the function $f(x)=x^2\;\;(x\in[-\pi,\pi])$. Its Fourier coefficients are given by $\hat{f}(0)=\pi^2/3$, $\hat{f}(n) = 2(-1)^n/n^2\;(n\ne0).$ The result then follows by applying Parseval's theorem.
 
Whenever I see factorials, I take advantage of the Gamma and Beta function, so $\displaystyle\frac{(n+1)(n+1)!}{(n+5)!}=\frac{1}{\Gamma (4)}\cdot \frac{(n+1)\Gamma (n+2)\Gamma (4)}{\Gamma (n+6)}=\frac{n+1}{\Gamma (4)}\cdot \beta (n,4)
,$ so the series becomes $\displaystyle\frac{1}{\Gamma (4)}\sum\limits_{n=1}^{\infty }{(n+1)\int_{0}^{1}{{{t}^{n+1}}{{(1-t)}^{3}}\,dt}}=\frac{1}{\Gamma (4)}\int_{0}^{1}{t{{(1-t)}^{3}}\sum\limits_{n=1}^{\infty }{(n+1){{t}^{n}}}\,dt}$ and then the series equals $\displaystyle\frac{1}{\Gamma (4)}\int_{0}^{1}{t\left( (1-t)-{{(1-t)}^{3}} \right)\,dt}$ which achieves the same value as shown.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K