Motor rotating at normal speed and then prevented from rotating

AI Thread Summary
The discussion centers on the behavior of a motor under two conditions: normal rotation and being prevented from rotating. When the motor is rotating, it functions as both a resistor and an electromotive force (emf) source in series. Conversely, when the motor is stopped, it behaves solely as a resistor. The provided formula for current in the circuit illustrates these principles, highlighting the difference in operation modes. Understanding these concepts is crucial for analyzing motor circuits effectively.
Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
A generator of electromotive force ##100\, \textrm{V}## and internal resistance ##1\, \Omega## is connected in series to a motor. A voltmeter is connected between the terminals of the generator. When the motor is rotating at normal speed the voltmeter reads ##95\, \textrm{V}## and when the motor is prevented from rotating it reads ##85\, \textrm{V}##. Calculate:
a) the resistance of the motor (R: ##5,67\, \Omega##).
b) the counter-electromotive force of the motor (R: ##66,7\, \textrm{V}##).
c) the useful power of the motor (R: ##334\, \textrm{W}##).
Relevant Equations
Ohm's law
The current of the circuit would be:

$$I=\dfrac{\varepsilon - \varepsilon'}{r+r'}=\dfrac{100-\varepsilon'}{1+r'}$$

But I do not understand the two methods of operation of the engine that the statement talks about: it rotates in normal regime and the engine is prevented from turning. What conclusions could I draw from this?
 
Physics news on Phys.org
When the motor is prevented from rotating, it acts as a simple resistor.

When the motor is rotating, it acts as a simple resistor and an emf-source in series.

You might find it useful to draw the two circuits.
 
  • Like
Likes Tomy World, berkeman and Guillem_dlc
Steve4Physics said:
When the motor is prevented from rotating, it acts as a simple resistor.

When the motor is rotating, it acts as a simple resistor and an emf-source in series.

You might find it useful to draw the two circuits.
Thank you very much! With this hint I was able to do the exercise and I got what it says.
 
  • Like
Likes berkeman and Steve4Physics
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top