MHB Multiple choices question on specific heats of gases

WMDhamnekar
MHB
Messages
376
Reaction score
28
Two cylinders A and B fitted with pistons contain equal amounts of an ideal diatomic gas at 300 K. The piston of A is free to move, while that of B is held fixed. The same amount of heat is given to the gas in each cylinder. If the rise in temperature of the gas in A is 30 K, then the rise in temperature of the gas in B is
(A) 30 K
(B) 18 K
(C) 50 K
(D) 42 K

My answer is 42 K. Is this answer correct?
 
Mathematics news on Phys.org
Okay, what do YOU understand about this problem? You titled it "specific heat" so you must know that specific heat has something to do with this. How is specific heat of a gas related to its temperature?
 
Country Boy said:
Okay, what do YOU understand about this problem? You titled it "specific heat" so you must know that specific heat has something to do with this. How is specific heat of a gas related to its temperature?
The piston in the cylinder A is free to move. Hence pressure of the gas is constant and the heat is given to it at constant pressure. that means $ Q_A=nC_p \Delta T_A$ where,
Q is the heat supplied or needed to bring about a change in temperature ($\Delta T$) in 1 mole of a substance ;
n is the amount of gas in moles;
$C_p$ is the molar heat capacity of a body of given substance at constant pressure.

The piston of the cylinder B is fixed. Hence the volume of the gas is constant and the heat is given at constant volume i.e., $ Q_B= nC_v \Delta T_B$ where $C_v$ is the molar heat capacity of a body of substance at constant volume.
The ratio of specific heats for a diatomic gas is $\frac{C_p}{C_v}=\frac75=1.4$. The heat given to the two gases are equal, $Q_A =Q_B$
So,
$\Delta T_B = \frac{C_p}{C_v}\Delta T_A= 42 K$
 
Looks good to me.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top