MHB Multiple Transformations of Functions

AI Thread Summary
To transform the function f(x) = x^3 into the new function, a horizontal shift of 3 units to the right and a vertical shift of 1 unit upward is required. The transformation can be expressed as f(x) = a(x-3)^3 + 1, where 'a' represents the stretch factor. Given the point (4, 1.5), the value of 'a' can be determined by substituting this point into the equation. This results in an equation that allows for the calculation of 'a', completing the transformation process. Understanding these transformations is crucial for accurately modifying the function.
saucybadimo
Messages
1
Reaction score
0
View attachment 9341

I have to transform the first function which is f(x)=x^3 to the second function. First, I have to find each shift then combine those to make a new function equation. I've used desmos and I know that there is a horizontal shift 3 units to the right. There is a vertical shift up but I don't know how many units. And I believe there is a stretch. There are only 3 transformations. PLEASE HELP!
 

Attachments

  • Screen Shot 2019-11-04 at 8.42.05 AM.png
    Screen Shot 2019-11-04 at 8.42.05 AM.png
    21.8 KB · Views: 102
Mathematics news on Phys.org
note the function center point $(0,0)$ is translated to $(3,1)$, a horizontal shift right 3 units and a vertical shift up 1 unit.

taking into account the horizontal & vertical shifts, we have ...

$f(x) = a(x-3)^3 + 1$

... where $a$ is the constant causing the stretch

using the point $(4,1.5)$, can you determine the value of $a$ ?
 

Attachments

  • cubic_transformation.jpg
    cubic_transformation.jpg
    47.3 KB · Views: 98
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top