MHB Multiplying Radicals: Where Is My Mistake?

  • Thread starter Thread starter Cuberoot1
  • Start date Start date
  • Tags Tags
    Radicals
Click For Summary
The discussion revolves around a misunderstanding in multiplying radicals, specifically the expression (7-sqrt3a)(7+sqrt3a). The correct approach utilizes the difference of squares formula, which states that (a-b)(a+b) equals a^2-b^2. The user initially attempted to expand the expression incorrectly, leading to an erroneous result. The correct calculation should yield 49 - 3a, rather than the user's result of 49 + 3a - 14sqrt3a. This highlights the importance of applying the correct algebraic identities when working with radicals.
Cuberoot1
Messages
4
Reaction score
0
I did this problem on paper but my calculator doesn't agree with the result. Can somebody tell me where I'm going wrong and how to do it right?

(7-sqrt3a)(7+sqrt3a)
= (7-sqrt3a)7+(7-sqrt3a)sqrt3a
= (7•7-7sqrt3a)+(7sqrt3a-sqrt3asqrt3a)
= 49-7sqrt3a+7sqrt3a-3a
= 49+3a-14sqrt3a

Even before I used the calculator something looked wrong, but I can't figure out how to fix it.
 
Mathematics news on Phys.org
Cuberoot said:
I did this problem on paper but my calculator doesn't agree with the result. Can somebody tell me where I'm going wrong and how to do it right?

(7-sqrt3a)(7+sqrt3a)
= (7-sqrt3a)7+(7-sqrt3a)sqrt3a
= (7•7-7sqrt3a)+(7sqrt3a-sqrt3asqrt3a)
= 49-7sqrt3a+7sqrt3a-3a
= 49+3a-14sqrt3a

Even before I used the calculator something looked wrong, but I can't figure out how to fix it.

(Wave)

$$(7-\sqrt{3a})(7+\sqrt{3a})=7 \cdot 7+ 7 \sqrt{3a}-7 \sqrt{3a}-(\sqrt{3a})^2=49-(\sqrt{3}a)^2$$
In general, it is known that $(a-b)(a+b)=a^2-b^2$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
35
Views
3K
Replies
1
Views
2K