Mutual Information from this Gaussian Distribution

Arman777
Insights Author
Gold Member
Messages
2,163
Reaction score
191
Homework Statement
Calculating Mutual Information from Gaussian
Relevant Equations
Statistics Equations
Let us suppose we are given a Gaussian Distribution in the form of

$$p(x,y) \propto exp(-\frac{1}{2}x^2 - \frac{1}{2}by^2 - cxy)$$ What are the equations that I need to use to obtain Mutual Information ?
 
Physics news on Phys.org
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top