MHB Nabeela Zubair's Question on Facebook (Counting Problem)

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Counting problem
AI Thread Summary
To solve the problem of choosing 2 different colors from 10 options, the first color has 10 possibilities, and the second color has 9, leading to a total of 90 combinations. However, since each combination is counted twice (e.g., A and B is the same as B and A), the total must be divided by 2, resulting in 45 unique combinations. This can also be represented using the binomial coefficient formula, which confirms that the number of ways to choose 2 colors from 10 is 45. The discussion emphasizes the importance of accounting for repetitions in combination problems. Understanding these principles is crucial for solving similar combinatorial questions.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Nabeela Zubair on Facebook writes:

How I can solve this problem?

Students are choosing 2 colors to be used as school colors. There are 10 colors from which to choose. How many different ways are there to choose 2 different colors?

Total Colors 3 4 5 6 7 8 9 10
# of 2-color Comb. 3 6 10
 
Mathematics news on Phys.org
Sudharaka said:
Nabeela Zubair on Facebook writes:

How I can solve this problem?

Students are choosing 2 colors to be used as school colors. There are 10 colors from which to choose. How many different ways are there to choose 2 different colors?

Total Colors 3 4 5 6 7 8 9 10
# of 2-color Comb. 3 6 10

Hi Nabeela, :)

For the first color yo have 10 possibilities. After choosing the first color the second one sould be something different, so there are 9 possibilities for the second one. So by the multiplication principle there are \(10\times 9\) total possibilities for choosing the two colors. But then there are repetitions involved here. That is we have counted each combination twice. If A and B are two colors we have counted A first, B second as well as B first, A second. Therefore the answer should be divided by two to get the number of combinations.

\[\frac{10\times 9}{2}=45\]

This idea can be generalized using the binomial coefficient.

\[\binom {10}{2}=\frac{10!}{2!\,8!}=\frac{10\times 9}{2}=45\]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top