Natural basis and dual basis of a circular paraboloid

Click For Summary
SUMMARY

The discussion focuses on deriving the natural and dual basis of a circular paraboloid parametrized by the equations \(x = \sqrt{U} \cos(V)\), \(y = \sqrt{U} \sin(V)\), and \(z = U\). The natural basis vectors \(e_U\) and \(e_V\) are calculated, leading to a metric tensor with components \(g_{UU} = 1 + \frac{1}{4U}\), \(g_{UV} = g_{VU} = 0\), and \(g_{VV} = U\). The dual basis vectors \(e^U\) and \(e^V\) are derived, but discrepancies arise in the metric tensor, specifically that \(g^{UU}\) should equal \(\frac{1}{1 + \frac{1}{4U}}\) instead of 1. The solution involves considering an additional coordinate \(W\) to accurately represent the dual basis in three-dimensional space.

PREREQUISITES
  • Understanding of differential geometry concepts, particularly natural and dual bases.
  • Familiarity with parametrization of surfaces, specifically circular paraboloids.
  • Knowledge of metric tensors and their properties in differential geometry.
  • Proficiency in vector calculus, including gradient and tangent space concepts.
NEXT STEPS
  • Study the derivation of natural and dual bases in differential geometry.
  • Learn about the parametrization of surfaces and their implications on basis vectors.
  • Explore the properties of metric tensors in various dimensions, particularly in 3D space.
  • Investigate the role of tangent spaces and gradients in defining dual vectors.
USEFUL FOR

Mathematicians, physicists, and engineers working with differential geometry, particularly those interested in surface parametrization and metric tensor analysis.

Adrian555
Messages
7
Reaction score
0
Member warned that the homework template must be used
Hi everyone!I'm trying to obtain the natural and dual basis of a circular paraboloid parametrized by:
$$x = \sqrt U cos(V)$$
$$y = \sqrt U sen(V)$$
$$z = U$$
with the inverse relationship:
$$V = \arctan \frac{y}{x}$$
$$U = z$$

The natural basis is:
$$e_U = \frac{\partial \overrightarrow{r}} {\partial U }=\frac{\partial x} {\partial U }\hat {i} + \frac{\partial y} {\partial U }\hat {j} + \frac{\partial z} {\partial U }\hat {k}=$$
$$ = \frac {cos(V)}{2\sqrt{U}} \hat {i} + \frac {sen(V)}{2\sqrt{U}} \hat {j} + \hat {k}$$
$$e_V = \frac{\partial \overrightarrow{r}} {\partial V }=\frac{\partial x} {\partial V }\hat {i} + \frac{\partial y} {\partial V }\hat {j} + \frac{\partial z} {\partial V }\hat {k}=$$
$$ = -\sqrt{U} sen(V) \hat {i} + \sqrt{U} cos(V) \hat {j} + 0\hat {k}$$

Which gives the following metric tensor:
$$e_U\cdot e_U=g_{UU}=1+\frac{1}{4U}$$
$$e_U\cdot e_V=g_{UV}=g_{VU}=0$$
$$e_V\cdot e_V=g_{VV}=U$$

What respects to the dual basis:
$$e^U = \nabla U=\frac{\partial U} {\partial x }\hat {i} + \frac{\partial U} {\partial y }\hat {j} + \frac{\partial U} {\partial z }\hat {k}=$$
$$ = 0\hat {i} + 0\hat {j} + \hat {k}$$
$$e^V = \nabla V=\frac{\partial V} {\partial x }\hat {i} + \frac{\partial V} {\partial y }\hat {j} + \frac{\partial V} {\partial z }\hat {k}=$$
$$ = \frac{-y}{x^2+y^2}\hat {i} + \frac{x}{x^2+y^2}\hat {j} + 0\hat {k}=-\frac{\sqrt{U}sen(V)}{U}\hat {i} + \frac{\sqrt{U}cos(V)}{U}\hat {j} + 0\hat {k}$$

However, in this case, the metric tensor is:
$$e^U\cdot e^U=g^{UU}=1$$
$$e^U\cdot e^V=g^{UV}=g^{VU}=0$$
$$e^V\cdot e^V=g^{VV}=\frac{1}{U}$$

which is definitely not the inverse of the one I obtained from the natural basis, because the component $$g^{UU}$$ should be $$\frac{1}{1+\frac{1}{4U}}$$ and not 1 (The metric tensor is diagonal)

Could anyone tell me where am I wrong?Thanks for your help!
 
Last edited by a moderator:
Physics news on Phys.org
I believe that the problem you're having is due to embedding the 2 dim surface in 3 dimensional space. Your procedure would work if you added a 3rd coordinate W and was looking at a coordinate basis and dual basis of 3 space.

Keep in mind that the dual basis is really representing a basis of the dual space. These vectors in the dual basis correspond to dual vectors when appended to the dot product. The dual vectors you found have an extra component normal to the surface and you must project this out.

Noting that the paraboloid equation is ##x^2 + y^2 -z = 0## try adding the third coordinate ##W=x^2+y^2-z##. Note that the third dual basis vector will be normal to the surface. Then take the components of ##\nabla U## and ##\nabla V## orthogonal to ##\nabla W##.

I *** THINK *** this will give you the right dual basis for the surface. I'll think about it some more and update my reply if needed.
 
Now that my power's back on... (Irma's fault)... Yep, here are the full metric forms in 3-space if you add the W coordinate:
\mathbf{g} \sim \left( \begin{array}{ccc} (1+\tfrac{1}{4U}) & 0 & -1\\ 0 & U & 0\\ -1 & 0 & 1\end{array}\right)
and dual metric is:
\mathbf{g}^* = \left(\begin{array}{ccc}4U & 0 & 4U\\ 0 & 1/U & 0\\ 4U & 0 & 4U +1\end{array}\right)

The problem here, to get the 2-dimensional metric and dual metric is that the tangent space (spanned by ##e_U,e_V## [edited]) is of course different at every point and the dual vectors are not in that tangent space. One must define a tangent component of the 3-dim gradient.
[To Be Continued]
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
Replies
4
Views
1K
Replies
5
Views
2K
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K