MHB Natural frequency of a pendulum being lowered at 2m/s

Dustinsfl
Messages
2,217
Reaction score
5
A heavy machine weighing \(9810\) N is being lowered vertically down by a winch at a uniform velocity of \(2\) m/s. The steel cable supporting the machine has a diameter of \(0.01\) m. The winch is suddenly stopped when the steel cable's length is \(20\) m. Find the period and amplitude of the ensuing vibration of the machine.

From the question, we know that \(m\ddot{x} = 9810\) N, the pendulum will have a length of \(20\) m, and then we have the diameter of cable and the speed at which it was lowered. I am not sure if the last two are superfluous.

How does one tackle this type of problem?
 
Mathematics news on Phys.org
dwsmith said:
A heavy machine weighing \(9810\) N is being lowered vertically down by a winch at a uniform velocity of \(2\) m/s. The steel cable supporting the machine has a diameter of \(0.01\) m. The winch is suddenly stopped when the steel cable's length is \(20\) m. Find the period and amplitude of the ensuing vibration of the machine.

From the question, we know that \(m\ddot{x} = 9810\) N, the pendulum will have a length of \(20\) m, and then we have the diameter of cable and the speed at which it was lowered. I am not sure if the last two are superfluous.

How does one tackle this type of problem?

Use Young's modulus for steel.
 
I like Serena said:
Use Young's modulus for steel.

It says that the young's modulus for steel is 200.
\[
\omega_n = \sqrt{\frac{200A}{mL}}
\]
where \(A\) is the cross sectional area and \(L\) is the length. So L = 20 and \(A = 0.000025\pi\). The mass is \(m = 9810/g \approx 1000\).
\[
\omega_n = 0.000886227
\]
This doesn't seem right.
 
Young's modulus for steel is 200 GPa.
 
I like Serena said:
Young's modulus for steel is 200 GPa.

dwsmith said:
A heavy machine weighing \(9810\) N is being lowered vertically down by a winch at a uniform velocity of \(2\) m/s. The steel cable supporting the machine has a diameter of \(0.01\) m. The winch is suddenly stopped when the steel cable's length is \(20\) m. Find the period and amplitude of the ensuing vibration of the machine.

From the question, we know that \(m\ddot{x} = 9810\) N, the pendulum will have a length of \(20\) m, and then we have the diameter of cable and the speed at which it was lowered. I am not sure if the last two are superfluous.

How does one tackle this type of problem?

From 9810 N you can find the mass of the ball by just dividing 9.81, and mas becomes simply 1000 kg. Now you can find Kinetic Energy of the ball. When the winch is suddenly stopped, the cable gets elongated and a potential energy develops which resist the ball. Now Youngs Modulus gives you the force applied on the cable which comes out as

F = (EA/L)*x=kx where E young's modulus (200 GPa), A area of the cable, L length of the cable, and x is the increment in length.
Elastic potential energy = kx*x/2
Equating with KE, you can get x which gives amplitude.
To find the period apply F=kx or T=2*pi*sqrt(m/k)
In my rough calculation period and amplitude comes about 0.19 sec and 0.035 mt. Best of luck.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top