MHB Natural Log Rule: $\frac{a}{b}=-\frac{b}{a}$?

AI Thread Summary
The discussion confirms that the natural logarithm of a fraction can be expressed as the negative logarithm of its reciprocal, specifically stating that $\ln\left(\frac{a}{b}\right)$ equals $-\ln\left(\frac{b}{a}\right)$. Participants agree that this relationship holds true, illustrating that $\ln(a) - \ln(b)$ simplifies to $\ln\left(\frac{a}{b}\right)$ and can also be represented as $-\left[\ln(b) - \ln(a)\right]$. The conversation emphasizes that inserting a negative sign in front of the logarithm effectively flips the fraction. Overall, the properties of logarithms regarding fractions and their reciprocals are clearly established.
tmt1
Messages
230
Reaction score
0
If I have $\ln\left({a}\right) - \ln\left({b}\right)$ that would equal $\ln\left({\frac{a}{b}}\right)$ or $-(\ln\left({b}\right) - \ln\left({a}\right))$ which is also $- \ln\left({\frac{b}{a}}\right)$. So does this mean $\ln\left({\frac{a}{b}}\right)$ equals $- \ln\left({\frac{b}{a}}\right)$?
 
Mathematics news on Phys.org
Yes, you are correct...another way to think of it is:

$$\log_a\left(\frac{b}{c}\right)=\log_a\left(\left(\frac{c}{b}\right)^{-1}\right)=-\log_a\left(\frac{c}{b}\right)$$
 
tmt said:
If I have $\, \ln (a) - \ln (b)\,$ that would equal $\,\ln\left({\dfrac{a}{b}}\right)\,$ or $\,-\left[\ln\left({b}\right) - \ln\left({a}\right)\right]\;$ which is also $\,- \ln\left({\dfrac{b}{a}}\right)$
So does this mean $\,\ln\left({\dfrac{a}{b}}\right)\,$ equals $\,- \ln\left({\dfrac{b}{a}}\right)\:$?
If you discovered this while 'fooling around' with logs, good workl

Yes indeed!
If you have the log of a fraction, inserting a minus in front
will 'flip' the fraction.

That is: -\ln\left(\frac{a}{b}\right) \:=\:\ln\left(\frac{b}{a}\right)

 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top