Huckleberry
- 491
- 7
Evo said:No, for example, if the lier is on the path to heaven, he would say no, so the truthful one would be on the path to hell and also say no. You've got 2 gnomes both saying no, so you have no idea which path they are on. Same if they were on opposite paths, they'd both say yes.
There is one gnome standing in front of a door. The door leads to heaven or hell and the gnome always lies or always tells the truth. There is one question (and variations of it) that will determine all of the variables. (edit - not true. It only determines where the door leads. If the gnome is honest or a liar is undetermined, but irrelevent.)
So I ask him, "If I asked you where this door leads, would you tell me it leads to heaven?"
Ok, assume the door leads to heaven.
If someone asked the truthful gnome if the door went to heaven he would answer 'yes,' so his answer is 'yes.'
If someone asked the liar if his door leads to heaven he would answer 'no,' so his answer to me will be 'yes.'
In either case I can be sure that this is indeed the door to heaven. If I ask the same question and the answer is 'no' then I know the door leads to hell. The question isn't asking where the door leads. The question is asking what they would say if asked another question. In this logic argument two truthful statements combined is still a truthful statement, and two lies cancel each other out and become a truthful statement.
Last edited: