Hi guys,(adsbygoogle = window.adsbygoogle || []).push({});

So my project partner and I are struggling to solve a problem with our laser spectroscopy data for rubidium isotopes and I thought it may be a good idea to see if you could help us.

If you take a look at the attached image you will see that the blue line shows our doppler free laser absorption bands for Rb87 f=2 state and Rb85 f=3 state, the yellow line is the fringe pattern of our corresponding Michelson Interferometer which we have been using to monitor the change in frequency of our laser.

Now, the problem that I'm hoping you may be able to help us with is that we want to produce the same plot but streched out to the regular size it should be. In other words if you take a look again at the Michelson line, you will see that the fringes compress together at certain parts and stretch away at others (caused by the scanning of the diffraction grating used to change the laser frequency), and these compressions and rarefactions occur on the absoption line too at the same parts. Consequently,the oscilloscope is not actually showing the absortion spectrum to the correct scale, if you get my meaning.

Given that we have extracted the numerical data for the oscilloscope plots for both lines, do you know if there's a way I can fix the plot in Matlab, with a formula or something?

I know my explanation is vague, Is just its hard for me to describe the problem in words but feel free to message any questions.

Many thanks in advance!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Need help manipulating absorption spectroscopy data please!

**Physics Forums | Science Articles, Homework Help, Discussion**