MHB Need help understanding phase shift in trigonometric curves

  • Thread starter Thread starter charki126
  • Start date Start date
  • Tags Tags
    Thanks Trig
Click For Summary
The discussion centers on determining the value of α that aligns the trigonometric curves y=asin(2π/λ(x+α)) and z=asin(2π/λx) in phase. The original poster's answer booklet states α=1−λx+nλ, while they consistently arrive at α=nλ, where n is an integer. Participants confirm that both curves have a period of λ, indicating they will be in phase when α equals kλ, with k being any integer. Clarification on the correct interpretation of the equations and phase alignment is sought. The conversation emphasizes the importance of understanding phase shifts in sinusoidal functions.
charki126
Messages
1
Reaction score
0
At what value of α is the curve y=asin2π/λ (x+α) in phase with z=asin2π/λ(x)?

My answer booklet says α=1−λx+nλ, but I keep getting α=nλ, where n=0,1,2...
I have no clue how to get to the answer shown in the mark scheme. Any insight would be much appreciated!
 
Mathematics news on Phys.org
Guessing at your syntax ... are the following interpretations correct?

$y = A\sin\left[\dfrac{2\pi}{\lambda} \cdot (x + \alpha)\right]$

$z = A\sin\left(\dfrac{2\pi}{\lambda} \cdot x \right)$

If so, then the period of both sinusoids is $\lambda$, hence I agree that the two will be in phase for $\alpha = k \lambda \, , \, k \in \mathbb{Z}$
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

  • · Replies 5 ·
Replies
5
Views
7K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
3K
Replies
3
Views
2K