MHB Need help understanding phase shift in trigonometric curves

  • Thread starter Thread starter charki126
  • Start date Start date
  • Tags Tags
    Thanks Trig
charki126
Messages
1
Reaction score
0
At what value of α is the curve y=asin2π/λ (x+α) in phase with z=asin2π/λ(x)?

My answer booklet says α=1−λx+nλ, but I keep getting α=nλ, where n=0,1,2...
I have no clue how to get to the answer shown in the mark scheme. Any insight would be much appreciated!
 
Mathematics news on Phys.org
Guessing at your syntax ... are the following interpretations correct?

$y = A\sin\left[\dfrac{2\pi}{\lambda} \cdot (x + \alpha)\right]$

$z = A\sin\left(\dfrac{2\pi}{\lambda} \cdot x \right)$

If so, then the period of both sinusoids is $\lambda$, hence I agree that the two will be in phase for $\alpha = k \lambda \, , \, k \in \mathbb{Z}$
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top