Need help with 2 Kinematics questions (New to forum and physics)

Click For Summary
SUMMARY

This discussion focuses on solving two kinematics problems involving aircraft and spacecraft. The first problem requires calculating the time until two aircraft, traveling at speeds of 300 km/h and 250 km/h along perpendicular paths, are out of communication range (10 km apart). The second problem involves determining the time it takes for light from NASA's New Horizons spacecraft, which is 32 astronomical units (au) from Earth, to reach Earth, given the speed of light is 3.0 × 105 km/s. Key equations include position/displacement equations and the relationship between speed, distance, and time.

PREREQUISITES
  • Understanding of kinematics and motion equations
  • Familiarity with the concept of astronomical units (au)
  • Basic knowledge of trigonometry for solving triangles
  • Ability to convert units (e.g., au to kilometers)
NEXT STEPS
  • Learn how to apply the Pythagorean theorem in kinematics problems
  • Study the conversion of astronomical units to kilometers
  • Explore the relationship between speed, distance, and time using the formula t = d/v
  • Review the principles of light speed and its implications in space communication
USEFUL FOR

This discussion is beneficial for students new to physics, particularly those studying kinematics, as well as educators looking for practical examples to illustrate motion concepts.

shivam28
Messages
5
Reaction score
0
Homework Statement
1. Two aircraft depart simultaneously from the same location along perpendicular trajectories, with constant speeds equal to 300 km/h and 250 km/h, respectively. The two aircraft can communicate directly with each other only if they are less than 10 km apart. How long after departure will the two aircraft be out of communications range?

2. The New Horizons spacecraft was launched by NASA to study the dwarf planet Pluto in January of 2006. In July, 2015, the spaceship arrived at Pluto’s vicinity and sent back pictures of its surface. The estimated distance between Earth and the craft, at its closest approach point to Pluto, was 32 au (astronomical unit; 1 au = 1.50 × 108 km). Considering that the speed of light is 3.0 × 105 km/s, the image received by Earth observatories traveled, from New Horizons to Earth, during approximately:

A. 0.1μs
B. 1h
C. 4.5h
D. 2d
E. 0s
Relevant Equations
⃗v = ∆⃗x ∆t
⃗x = ⃗x 0 + ⃗v t

⃗a = ∆⃗v ∆t
⃗v = ⃗v 0 + ⃗a t
v 2 = v 20 + 2 a ( x − x 0 )
⃗x = ⃗x + v⃗ t + 1 ⃗a t 2
I am new to physics and these are my last two questions of my homework. I am extremely confused on what to do but I do know that for question 1 I need to create a triangle and solve for the hypotenuse, and for question 2 I believe I need to input my given values into the equation for position/displacement: ⃗x = ⃗x + v⃗ t + 1 ⃗a t 2. However once again, I am extremely confused.
 
Physics news on Phys.org
shivam28 said:
Homework Statement: 1. Two aircraft depart simultaneously from the same location along perpendicular trajectories, with constant speeds equal to 300 km/h and 250 km/h, respectively. The two aircraft can communicate directly with each other only if they are less than 10 km apart. How long after departure will the two aircraft be out of communications range?

2. The New Horizons spacecraft was launched by NASA to study the dwarf planet Pluto in January of 2006. In July, 2015, the spaceship arrived at Pluto’s vicinity and sent back pictures of its surface. The estimated distance between Earth and the craft, at its closest approach point to Pluto, was 32 au (astronomical unit; 1 au = 1.50 × 108 km). Considering that the speed of light is 3.0 × 105 km/s, the image received by Earth observatories traveled, from New Horizons to Earth, during approximately:

A. 0.1μs
B. 1h
C. 4.5h
D. 2d
E. 0s
Homework Equations: ⃗v = ∆⃗x ∆t
⃗x = ⃗x 0 + ⃗v t

⃗a = ∆⃗v ∆t
⃗v = ⃗v 0 + ⃗a t
v 2 = v 20 + 2 a ( x − x 0 )
⃗x = ⃗x + v⃗ t + 1 ⃗a t 2

I am new to physics and these are my last two questions of my homework. I am extremely confused on what to do but I do know that for question 1 I need to create a triangle and solve for the hypotenuse, and for question 2 I believe I need to input my given values into the equation for position/displacement: ⃗x = ⃗x + v⃗ t + 1 ⃗a t 2. However once again, I am extremely confused.

Let's see what you can do about the hypoteneuse in question 1. You don't seem so confused about that.
 
Hints for Problem #2:
It is given that the spacecraft traveled a distance of 32 au (the distance between Earth and its closest approach point to Pluto). The first thing we need to do is convert 32 au into kilometers, since the speed of light is given in units of km/s.
##32 \text{ au} = 1.50 \times 10^8 \text{ km}##
##(1.50 x 10^8)(32) = 4.80 \times 10^9 \text{ km}##

The question asks for the time it takes for light to travel from the spacecraft back to Earth at ##3.8 \times 10^5 \text{ km/s}##.
So, we already know that the distance is:
##Δx=4.80 \times 10^9 \text{ km}##
And it's given that:
##v=3.8 \times 10^5 \text{ km/s}##

So, all you need to do now is solve for t.
 
Last edited by a moderator:
  • Like
Likes   Reactions: Delta2

Similar threads

  • · Replies 20 ·
Replies
20
Views
2K
Replies
18
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
40
Views
2K
Replies
22
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K