(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

I have to prove the following:

[tex]

\hbar \frac{d}{dt}\langle L\rangle = \langle N \rangle

[/tex]

Edit: L = Angular Momentum & N = Torque

2. Relevant equations

I used Ehrenfest's theorem, and I've got the equation in the following form:

[tex]

\frac{1}{i} \left(\left[L,H\right]\right) + \hbar \left\langle \frac{\partial L}{\partial t}\right\rangle

[/tex]

3. The attempt at a solution

I pretty much need to prove the commutator term vanishes, but I'm not sure if it does. I've done the following with the commutation:

[tex]

i\hbar\frac{d}{dt}(\mathbf{r}\times\mathbf{p}) - i\hbar(\mathbf{r}\times\mathbf{p})\frac{d}{dt}

[/tex]

[tex]

-i^2\hbar^2\frac{d}{dt}(\mathbf{r}\times\mathbf{\nabla}_r) - -(i^2)\hbar^2(\mathbf{r}\times\mathbf{\nabla}_r)\frac{d}{dt}

[/tex]

[tex]

\hbar^2\frac{d}{dt}(\mathbf{r}\times\mathbf{\nabla}_r) - \hbar^2(\mathbf{r}\times\mathbf{\nabla}_r)\frac{d}{dt}

[/tex]

[tex]

\hbar^2\frac{d}{dt}\left(\epsilon_{ijk}\mathbf{r}^j\mathbf{\nabla}^k\right) - \hbar^2\left(\epsilon_{ijk}\mathbf{r}^j\mathbf{\nabla}^k\right) \frac{d}{dt}

[/tex]

Can I switch the order of the derivatives/operators in such a way that I get the following:

[tex]

\hbar^2\frac{d}{dt}\left(\epsilon_{ijk}\mathbf{r}^j\mathbf{\nabla}^k\right) - \hbar^2\frac{d}{dt}\left(\epsilon_{ijk}\mathbf{r}^j\mathbf{\nabla}^k\right) = 0

[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Need help with proof for expectation value relation.

**Physics Forums | Science Articles, Homework Help, Discussion**