I need help or direction on how to prove that if A = S^2 - (T^2 + T)/2 Then 8A-1 can not be factored into the form B*C where B and C are coprime and each of the form 8N+/-3. For instance -4*8-1 = -33 can be factored as -3*(8+3) and 5*8-1 = 39 = 3*(8*2-3). Thus neither -4 or 5 can be expressed as S^2 -(T^2+T)/2 where S and T are integers.(adsbygoogle = window.adsbygoogle || []).push({});

So far I have proven that if A = f(S,T) = S^2 - (T^2+T)/2 then A = f(S',T') where S' = 3S + 2T +1 and T' = 4S + 3T + 1, but I don't know where to go from there.

Any ideas.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Need proof re prime of the form 8N +/-1

**Physics Forums | Science Articles, Homework Help, Discussion**