I need help or direction on how to prove that if A = S^2 - (T^2 + T)/2 Then 8A-1 can not be factored into the form B*C where B and C are coprime and each of the form 8N+/-3. For instance -4*8-1 = -33 can be factored as -3*(8+3) and 5*8-1 = 39 = 3*(8*2-3). Thus neither -4 or 5 can be expressed as S^2 -(T^2+T)/2 where S and T are integers.(adsbygoogle = window.adsbygoogle || []).push({});

So far I have proven that if A = f(S,T) = S^2 - (T^2+T)/2 then A = f(S',T') where S' = 3S + 2T +1 and T' = 4S + 3T + 1, but I don't know where to go from there.

Any ideas.

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Need proof re prime of the form 8N +/-1

**Physics Forums | Science Articles, Homework Help, Discussion**