I Need some help with trace calculation in an index theorem

Othin
Messages
34
Reaction score
1
TL;DR Summary
I am having trouble with an apparently simple step in Weinberg's index calculation for Abelian BPS vortices. Specifically, the expression ##( A_1\partial_2 - A_2\partial_1)## prevents me from finding the correct result.
I hate to create a thread for a step in a calculation, by I don't know what else to do. I'm having a lot of trouble reproducing E. Weinberg's index calculation (found here https://inspirehep.net/literature/7539) that gives the dimension of the moduli space generated by BPS solutions in the Maxwell-Higgs model. This calculation revolves around the operators
\begin{equation}
D=\begin{bmatrix}
(\partial_{1} + A_2) & (-\partial_{2} + A_1) & \phi_2 & \phi_1 \\
(\partial_{2} - A_1) & (\partial_{1}+A_2) & -\phi_1 & \phi_2\\
\phi_1 & \phi_2 & -\partial_2 & \partial_1 \\
0 & 0 & \partial_1 & \partial_2
\end{bmatrix}
\end{equation}
and its hermitian adjoint
\begin{equation}
D^{\dagger}=\begin{bmatrix}
(-\partial_{1} + A_2) & (-\partial_{2} - A_1) & \phi_1& 0 \\
(\partial_{2}+ A_1) & (-\partial_{1}+A_2) & \phi_2 & 0\\
\phi_2 & -\phi_1 & \partial_2 & -\partial_1 \\
\phi_1 & \phi_2 & -\partial_1 & -\partial_2
\end{bmatrix}
\end{equation},
where ##A_j## is an electromagnetic vector potential while ##\phi_1## and ##\phi_2## are the real and imaginary parts of a complex scalar field, and the Gauge condition ##\partial_1A_1 + \partial_2A_2## is assumed. At some point, it is stated that ##D^{\dagger}D=-\nabla^2 -L_1##, ##DD^{\dagger}=-\nabla^2 -L_2##, where ##L_i## are operators satisfying ##\rm{Tr}(L_1-L_2)=4(\partial_1A_2 -\partial_2 A_2)##. That's what I'm having trouble with. It should be a straightforward calculation, but I get an extra factor in the result, and I don't see how it is zero. Specifically, I find ##(D^{\dagger}D)_{11}=-\nabla^2 + |A|^2 - F_{12} - A_1\partial_2 + A_2\partial_1 + \phi_1^2;## ##(D^{\dagger}D)_{22}=(D^{\dagger}D)_{11} - \phi_1^2 + \phi_2^2;## ##(D^{\dagger}D)_{33}=(D^{\dagger}D)_{44}=-\nabla^2 + (\phi_1^2 + \phi_2^2)##; ##(DD^{\dagger})_{11}=-\nabla^2 + |A|^2 + F_{12} + A_1\partial_2 - A_2\partial_1 + \phi_1^2 + \phi_2^2=(DD^{\dagger})_{22};##; ##(DD^{\dagger})_{33}=-\nabla^2 +(\phi_1^2 + \phi_2^2) ## and, finally, ##(DD^{\dagger})_{33}=-\nabla^2 ##. Thus, ##\rm{Tr}(L_1-L_2)=4(\partial_1A_2 -\partial_2 A_2 + A_1\partial_2 - A_2\partial_1)##. At first I thought I had the signs wrong, but I always end up with this extra term, no matter how many attempts I make. So, is ##\mathbf{( A_1\partial_2 - A_2\partial_1)}## zero in the Coulomb gauge or something like that ? If not, does someone have a clue on what I messed up? It may be something silly, but I really want to understand this.
 
Physics news on Phys.org
Your computation (at least for ##(D^\dagger D)_{11}## which is the only one I've checked) is wrong.
In general, if you have two operators ##A## and ##B##, you can define the operator ##(AB)## by requiring that $$(AB)x=A(Bx), \quad \forall x$$
Then, if your operators have the associative property you can simply write
$$(AB)x=A(Bx)=(A\cdot B) x \Longrightarrow AB = A\cdot B$$
But that's not true in general. In particular, derivatives don't have the associative property, so you can't just multiply ##D## and ##D^\dagger## as normal matrices. You need to compute ##D^\dagger(D\psi)## for an arbitrary ##\psi## and then find the corresponding operator ##(D^\dagger D)## that would give the same result.
 
Gaussian97 said:
Your computation (at least for ##(D^\dagger D)_{11}## which is the only one I've checked) is wrong.
In general, if you have two operators ##A## and ##B##, you can define the operator ##(AB)## by requiring that $$(AB)x=A(Bx), \quad \forall x$$
Then, if your operators have the associative property you can simply write
$$(AB)x=A(Bx)=(A\cdot B) x \Longrightarrow AB = A\cdot B$$
But that's not true in general. In particular, derivatives don't have the associative property, so you can't just multiply ##D## and ##D^\dagger## as normal matrices. You need to compute ##D^\dagger(D\psi)## for an arbitrary ##\psi## and then find the corresponding operator ##(D^\dagger D)## that would give the same result.
Oh, that's right. Thank you very much, I now have the right result.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top