Graduate Negative energy in Hawking radiation

Click For Summary
Negative energy quanta are introduced in the context of Hawking radiation, where they enter black holes. There are two distinct mathematical interpretations of negative energy: one involves Bogoliubov modes with negative frequencies, while the other relates to negative energy flux through the event horizon from the energy-momentum tensor. These two concepts of negative energy appear unrelated, leading to confusion in understanding their connection. The discussion highlights a recognized disconnect between various heuristic descriptions of Hawking radiation, including the common analogy of virtual particle pairs. Overall, the relationship between these interpretations remains unclear and warrants further exploration.
Demystifier
Science Advisor
Insights Author
Messages
14,608
Reaction score
7,217
At a descriptive level, negative energy quanta enter a black hole during Hawking radiation. But when one tries to understand it mathematically, it seems that negative "energies" appear in two very different senses, which seem to be totally unrelated to each other. At one level one has Bogoliubov modes with negative frequencies, i.e. modes proportional to ##e^{-i\omega t}## where ##\omega## is negative and ##t## is a certain coordinate time. At another level one has negative flux of energy through the horizon, computed from the renormalized expectation value of the energy-momentum tensor. But it seems to me that those two notions of "negative energy" are totally unrelated to each other. Or at least I don't see how they are related. Is there a relation between them that I miss?
 
Physics news on Phys.org
Demystifier said:
Is there a relation between them that I miss?
Not that I'm aware of. I believe the disconnect between the various heuristic descriptions of Hawking radiation has been commented on in the literature. Another disconnect is between both of your descriptions and the "pair of virtual particles with one falling into the hole and the other escaping to infinity" description.
 
  • Like
Likes Demystifier
MOVING CLOCKS In this section, we show that clocks moving at high speeds run slowly. We construct a clock, called a light clock, using a stick of proper lenght ##L_0##, and two mirrors. The two mirrors face each other, and a pulse of light bounces back and forth betweem them. Each time the light pulse strikes one of the mirrors, say the lower mirror, the clock is said to tick. Between successive ticks the light pulse travels a distance ##2L_0## in the proper reference of frame of the clock...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 73 ·
3
Replies
73
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
604
  • · Replies 4 ·
Replies
4
Views
2K