MHB Neighbourhoods and Open Neighbourhoods .... Browder, Proposition 6.8 .... ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
Click For Summary
Proposition 6.8 in Andrew Browder's "Mathematical Analysis: An Introduction" states that a point x is in the closure of a set E if every open neighborhood U of x intersects E non-emptily. The discussion centers on understanding why this condition also holds for every neighborhood U of x, not just open ones. It is clarified that since every neighborhood contains an open neighborhood, the intersection with E remains non-empty. Therefore, if an open neighborhood intersects E, so must any neighborhood containing it. This understanding reinforces the relationship between open neighborhoods and the closure of sets in topology.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Andrew Browder's book: "Mathematical Analysis: An Introduction" ... ...

I am reading Chapter 6: Topology ... ... and am currently focused on Section 6.1 Topological Spaces ...

I need some help in order to fully understand an aspect of Proposition 6.8 ... ...


Proposition 6.8 (and the relevant Definition 6.8 ... ) read as follows:

View attachment 9163In the above text (in the statement of Proposition 6.8 ...) we read the following:

" ... ... $$x \in \overline{E}$$ if and only if $$U \cap E \neq \emptyset$$ for every open neighborhood $$U$$ of $$x$$ (and hence for every neighborhood $$U$$ of $$x$$) ... ..."My question is as follows:

Why, if the statement: " ... $$x \in \overline{E}$$ if and only if $$U \cap E \neq \emptyset$$ .. "

... is true for every open neighborhood $$U$$ of $$x$$ ...

... is the statement necessarily true for every neighborhood $$U$$ of $$x$$ ... ?

Help will be appreciated ...

Peter=====================================================================================The definition of a neighborhood is relevant to the above post ... so I am providing access to Browder's definition of the same as follows:
View attachment 9164

Hope that helps ...

Peter
 

Attachments

  • Browder - Defn of Closure 6.7 and Relevant Propn 6.8  ... .png
    Browder - Defn of Closure 6.7 and Relevant Propn 6.8 ... .png
    21 KB · Views: 133
  • Browder - 2 - Start of 6.1 - Relevant Defns & Propns ... PART 2 ... .png
    Browder - 2 - Start of 6.1 - Relevant Defns & Propns ... PART 2 ... .png
    18.7 KB · Views: 114
Physics news on Phys.org
Your question is "why does $x\in \overline E$ and U an open imply $U\cap E$ non-empty"

Okay, $\overline{E}$ is the "closure of E", the intersection of all closed sets that contain E. And a set is "closed" if it contains all of its boundary points with a "boundary point" being a point, p, such that every open set containing p also contains at least one point of E.
 
Peter said:
Why, if the statement: " ... $$x \in \overline{E}$$ if and only if $$U \cap E \neq \emptyset$$ .. "

... is true for every open neighborhood $$U$$ of $$x$$ ...

... is the statement necessarily true for every neighborhood $$U$$ of $$x$$ ... ?
If $W$ is a neighbourhood of $x$ then (by definition) it contains an open neighbourhood of $x$. That open neighbourhood has a nonempty intersection with $E$, hence so does $W$.
 
Opalg said:
If $W$ is a neighbourhood of $x$ then (by definition) it contains an open neighbourhood of $x$. That open neighbourhood has a nonempty intersection with $E$, hence so does $W$.
HallsofIvy and Opalg ... thanks for the help

Peter
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K
Replies
2
Views
2K