Neonblast342's question at Yahoo Answers regarding finding a rate of change

Click For Summary
SUMMARY

The discussion addresses the calculus problem of finding the rate of change of the central angle θ with respect to the radius r of a circular sector, given that the area A remains constant. The formula for the area of the sector is A = (1/2)r²θ. By applying the product rule and differentiating with respect to r, the derivative is established as dθ/dr = -4A/r³. Specifically, when r = 6, the rate of change is calculated as dθ/dr|_{r=6} = -A/54.

PREREQUISITES
  • Understanding of calculus concepts, specifically differentiation
  • Familiarity with the formula for the area of a circular sector
  • Knowledge of the product rule in calculus
  • Basic understanding of constants in mathematical equations
NEXT STEPS
  • Study the application of the product rule in calculus
  • Explore the implications of constant area in geometric shapes
  • Learn about the relationship between radius and angle in circular sectors
  • Investigate further examples of rates of change in calculus
USEFUL FOR

Students studying calculus, educators teaching mathematical concepts, and anyone interested in understanding the relationship between geometric properties and rates of change.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus problem! Please help!?

The area of a sector in a circle is given by the formulawhere r is the radius andis the central angle measured in radians. Find the rate of change ofwith respect to r if A remains constant. What is the rate when r = 6?

Here is a link to the question:

Calculus problem! Please help!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Hello neonblast342,

The formula for the area of the described circular sector is:

$\displaystyle A=\frac{1}{2}r^2\theta$

where $r,\theta>0$

We need to compute $\displaystyle \frac{d\theta}{dr}$.

I would first multiply through by 2:

$\displaystyle 2A=r^2\theta$

Now, differentiate with respect to $r$, and since $\theta$ is a function of $r$, we must use the product rule on the right side. We should recall that $A$ is a constant:

$\displaystyle 0=r^2\frac{d\theta}{dr}+2r\theta$

If we observe that $0<r$, otherwise we have a degenerate sector where $\theta$ has no meaning, then we may divide through by $r$ to obtain:

$\displaystyle 0=r\frac{d\theta}{dr}+2\theta$

Solve for $\displaystyle \frac{d\theta}{dr}$:

$\displaystyle \frac{d\theta}{dr}=-\frac{2\theta}{r}$

The negative sign indicates that $r$ and $\theta$ must move in opposite directions in order for $A$ to remain constant. IN other words, if $r$ increases, the $\theta$ must decrease and vice versa.

We want to have our derivative in terms of $r$ alone, so using the formula for the area $A$ of the sector, we find:

$\displaystyle \theta=\frac{2A}{r^2}$

and so we have:

$\displaystyle \frac{d\theta}{dr}=-\frac{2\frac{2A}{r^2}}{r}=-\frac{4A}{r^3}$

When $r=6$ we find:

$\displaystyle \frac{d\theta}{dr}|_{r=6}=-\frac{4A}{6^3}=-\frac{A}{54}$
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 4 ·
Replies
4
Views
9K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 10 ·
Replies
10
Views
6K