MHB Neonblast342's question at Yahoo Answers regarding finding a rate of change

AI Thread Summary
The discussion focuses on finding the rate of change of the central angle θ with respect to the radius r in a circular sector while keeping the area A constant. The area is given by the formula A = (1/2)r²θ. By differentiating this equation and applying the product rule, it is established that dθ/dr = -2θ/r, indicating that as r increases, θ must decrease to maintain a constant area. Further simplification leads to the expression dθ/dr = -4A/r³. Specifically, when r equals 6, the rate of change is calculated as dθ/dr = -A/54.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus problem! Please help!?

The area of a sector in a circle is given by the formulawhere r is the radius andis the central angle measured in radians. Find the rate of change ofwith respect to r if A remains constant. What is the rate when r = 6?

Here is a link to the question:

Calculus problem! Please help!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello neonblast342,

The formula for the area of the described circular sector is:

$\displaystyle A=\frac{1}{2}r^2\theta$

where $r,\theta>0$

We need to compute $\displaystyle \frac{d\theta}{dr}$.

I would first multiply through by 2:

$\displaystyle 2A=r^2\theta$

Now, differentiate with respect to $r$, and since $\theta$ is a function of $r$, we must use the product rule on the right side. We should recall that $A$ is a constant:

$\displaystyle 0=r^2\frac{d\theta}{dr}+2r\theta$

If we observe that $0<r$, otherwise we have a degenerate sector where $\theta$ has no meaning, then we may divide through by $r$ to obtain:

$\displaystyle 0=r\frac{d\theta}{dr}+2\theta$

Solve for $\displaystyle \frac{d\theta}{dr}$:

$\displaystyle \frac{d\theta}{dr}=-\frac{2\theta}{r}$

The negative sign indicates that $r$ and $\theta$ must move in opposite directions in order for $A$ to remain constant. IN other words, if $r$ increases, the $\theta$ must decrease and vice versa.

We want to have our derivative in terms of $r$ alone, so using the formula for the area $A$ of the sector, we find:

$\displaystyle \theta=\frac{2A}{r^2}$

and so we have:

$\displaystyle \frac{d\theta}{dr}=-\frac{2\frac{2A}{r^2}}{r}=-\frac{4A}{r^3}$

When $r=6$ we find:

$\displaystyle \frac{d\theta}{dr}|_{r=6}=-\frac{4A}{6^3}=-\frac{A}{54}$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top