I Neutrinoless double beta decay derivation

Click For Summary
A request for a derivation of the neutrinoless double beta decay rate, expressed as Γββ^0ν = G^0ν|M^0ν|^2<mββ>^2, highlights the need for resources on this topic. Key references include a review article from the Particle Data Group and a well-structured Wikipedia article that provides foundational information. A preprint from March 11, 2021, offers a concise summary of relevant background details and cites two significant papers for further in-depth analysis. The first paper discusses the implications of neutrinoless double beta decay within the context of physics beyond the Standard Model, while the second paper reviews the current status and future prospects of the decay. These resources are essential for understanding the theoretical framework and calculations involved in neutrinoless double beta decay.
Malamala
Messages
348
Reaction score
28
Hello! Can someone point me towards a derivation (whether with Fermi Golden rule, or full QFT calculations) of the decay rate for the neutrinoless double beta decay:

$$\Gamma_{\beta\beta}^{0\nu} = G^{0\nu}|M^{0\nu}|^2<m_{\beta\beta}>^2$$

Thank you!
 
Physics news on Phys.org
There is a short review article at the Particle Data Group. And there is a fairly well written Wikipedia article on the topic, together with the references that it cites, which is probably the best place to start.

Most of the details are spelled out in a summary manner as background in this March 11, 2021 preprint at pages 2-6. And, two references in that paper provide a more in depth analysis (with the arXiv open access preprint number in square brackets at the end of each citation):

* F. F. Deppisch, M. Hirsch and H. Pas, Neutrinoless Double Beta Decay and Physics Beyond the Standard Model, J. Phys. G 39 (2012) 124007, [1208.0727], and

* M. J. Dolinski, A. W. P. Poon and W. Rodejohann, Neutrinoless Double-Beta Decay: Status and Prospects, Ann. Rev. Nucl. Part. Sci. 69 (2019) 219–251, [1902.04097].

[Mentors' note: A digression sparked by the wikipedia reference has been moved to a thread in General Discussion]
 
Last edited by a moderator:
Thread 'Some confusion with the Binding Energy graph of atoms'
My question is about the following graph: I keep on reading that fusing atoms up until Fe-56 doesn’t cost energy and only releases binding energy. However, I understood that fusing atoms also require energy to overcome the positive charges of the protons. Where does that energy go after fusion? Does it go into the mass of the newly fused atom, escape as heat or is the released binding energy shown in the graph actually the net energy after subtracting the required fusion energy? I...