NEW Beginner's Trigonometry Identities Problem

Click For Summary
SUMMARY

The discussion focuses on solving a trigonometric problem where cosΘ = -4/9 in Quadrant II, leading to the determination of sinΘ. It is established that the sine function is positive in Quadrant II, and the Pythagorean identity sin²(θ) + cos²(θ) = 1 is used to relate sine and cosine. Participants emphasize the importance of using LaTeX for clarity in mathematical expressions, particularly in formatting trigonometric functions correctly.

PREREQUISITES
  • Understanding of trigonometric functions and their properties
  • Familiarity with the unit circle and quadrants
  • Knowledge of the Pythagorean identity in trigonometry
  • Basic skills in LaTeX for formatting mathematical expressions
NEXT STEPS
  • Study the unit circle and its implications for sine and cosine values
  • Learn how to derive sine and cosine values using the Pythagorean identity
  • Explore advanced LaTeX formatting techniques for mathematical expressions
  • Practice solving trigonometric identities and equations
USEFUL FOR

Students learning trigonometry, educators teaching trigonometric identities, and anyone seeking to improve their mathematical expression formatting skills using LaTeX.

courtbits
Messages
15
Reaction score
0
Alright. I am sort of understanding this section on my online math lesson, but I am still struggling with it. Would be gladly appreciated if someone could help me with this:

If cosΘ = -4/9 with Θ in Quadrant II, find sinΘ
 
Mathematics news on Phys.org
I want to ask you 2 questions:

  • What is the sign of the sine function in Quadrant II?
  • Is there an identity that can relate sine and cosine, that is, sine and cosine are the only two trig. functions present in the identity?
 
MarkFL said:
I want to ask you 2 questions:

  • What is the sign of the sine function in Quadrant II?
  • Is there an identity that can relate sine and cosine, that is, sine and cosine are the only two trig. functions present in the identity?

1) I have no idea what you are asking. v~v <== Dunce
2) Umm.. $${sin}^{2}\theta + {cos}^{2}\theta = 1$$ ...I think. o-o"

YAAS. I figured out how to use the Latex stuff. :D
 
Last edited:
courtbits said:
1) I have no idea what you are asking. v~v <== Dunce
2) Umm.. $${sin}^{2}\theta + {cos}^{2}\theta = 1$$ ...I think. o-o"

YAAS. I figured out how to use the Latex stuff. :D

1.) Picture the unit circle, and a point on the circle in Quadrant II...is the $y$-coordinate positive or negative?

2.) Yes, good...since you are being asked to find the sine function, can you solve this identity for $\sin(\theta)$? And then the answer to part 1.) will tell you which root to take.

3.) Good job using $\LaTeX$. One suggestion...precede the trig. functions with a backslash, and they will not be italicized which makes them look like string of variables rather than pre-defined functions. For example, the code:

\sin^2(\theta)+\cos^2(\theta)=1

produces:

$\sin^2(\theta)+\cos^2(\theta)=1$

Also, for clarity, it is always a good idea to enclose the arguments of the functions in bracketing symbols...this way everyone knows exactly what the angle is. :D
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
12K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
9K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K