A New magnetic field imaging technology with 100 nm resolution

Gribkov
Messages
2
Reaction score
2
TL;DR Summary
New scanning electron microscope imaging technology allows you to see the structure of the magnetic field around magnets with a resolution of 100 nm
"Method Non-Contact Visualization of Magnetic Fields of Magnets and Magnetized Materials in a Scanning Electron Microscope and the Effect of Anomalous Anisotropy of Electron Trajectories in Magnetic Fields"

The preprint of the article is here:
 
Physics news on Phys.org
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4812984
va34-101.jpg
va35-100.jpg
 
Last edited by a moderator:
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
I passed a motorcycle on the highway going the opposite direction. I know I was doing 125/km/h. I estimated that the frequency of his motor dropped by an entire octave, so that's a doubling of the wavelength. My intuition is telling me that's extremely unlikely. I can't actually calculate how fast he was going with just that information, can I? It seems to me, I have to know the absolute frequency of one of those tones, either shifted up or down or unshifted, yes? I tried to mimic the...
Back
Top