Newton's Cradle same diameter, different mass

  • Thread starter Thread starter lostagain
  • Start date Start date
  • Tags Tags
    Diameter Mass
AI Thread Summary
In a Newton's Cradle, when balls of the same diameter but different masses are used, the mass does not affect the system's behavior as long as they are dense enough to ignore air resistance. Both kinetic energy (KE) and momentum are proportional to mass, allowing mass to be canceled out in equations. The metal balls impart approximately three times the impulse to the fifth ball compared to the marble balls, but they also require three times the impulse to achieve the same height due to their greater mass. Thus, while mass influences the impulse needed, the fundamental dynamics of the cradle remain consistent. This demonstrates that the mass of the balls does not change the overall mechanics of the Newton's Cradle.
lostagain
Messages
1
Reaction score
0
Homework Statement
I have two cradles, one with 5 metal balls 2.54cm in diameter and 66g and one with 5 marble balls 2.54cm in diameter and 21g. The 1st metal ball was released with no applied force from 10cm which kicked the 5th ball out to 10cm's. I assumed since P and KE were both different for the metal and the marble balls, that the marble ball, when tested from the same drop height would not bounce as far. It did, 5th ball went out 10cm too.
How can the mass not affect the 5th ball more with the metal ball?
Relevant Equations
Ball Type Weight Grams
Metal 66
Marble 21

V = SQRT(D * (acceleration due to gravity or 9.8 m/s^2))2
D = .1 in meters

P=MV
KE = =(MV^2) / 2
Ball drops cm P (Momentum)
Metal 10cm 92.4
Marble 10cm 29.4

Ball drops cm KE
Metal KE 10cm 64.68
Marble KE 10cm 20.58
 
Physics news on Phys.org
As long as all balls in a cradle have the same mass (which they do here), and as long as they're dense enough to allow us to ignore air resistance (this too is OK here), the mass doesn't matter.

Why? Because both KE and momentum/impulse are proportional to the ball mass M, so for any equation involving M we can remove M by either cancelling (when it appears in the numerator and denominator of a fraction) or dividing the whole equation by M.

Looked at another way: the metal ball scenario does affect the 5th ball more: it imparts approximately three times (66/21) the impulse to that ball compared to what is imparted to the fifth ball in the marble-ball cradle. But it needs three times the impulse to make the ball reach the same height, because the ball is three times as heavy.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top