Newton's First law of motion -- Boy jumping vertically on a moving train

AI Thread Summary
The discussion centers on the application of Newton's First Law of Motion regarding a boy jumping vertically on a moving train. Participants debate whether the boy would land in the same spot, with one asserting that the train's lack of acceleration supports this conclusion. Observations about liquids poured in a moving aircraft falling straight down reinforce the idea that objects behave according to Newton's laws in inertial frames. The consensus leans toward the understanding that the boy's vertical jump does not alter his horizontal motion relative to the train. Overall, the conversation emphasizes the principles of inertia and motion in a non-accelerating frame.
Mikasun1108
Messages
10
Reaction score
8
Homework Statement
A boy was inside a train moving at a constant speed when he jumped. When he landed on the floor of the train after the jump, he did not land on the same spot as the train was moving forward.
a. True
b. False
Relevant Equations
Newton's first law of motion
I'm not sure if my answer is correct but I think the answer is false.
Thank you for your help :)
-sun1108
 
Physics news on Phys.org
Show some effort : why do you think the statement is "false" ?
 
hmmm27 said:
Show some effort : why do you think the statement is "false" ?

I personally think that it is because the train wasn't accelerating therefore it will land at the same spot. And also sort of because of my own experience (not entirely sure) when flight attendence pour some water/juice etc the liquid comes straight down and not on a different angle. Therefore my logic brought me to this conclusion. Sorry fo just adding this now, i wasn't entirely sure.
 
Last edited by a moderator:
"When flight attendence pour some water/juice etc the liquid comes straight down and not on a different angle."

That's a good observation. The aircraft is moving almost inertially (i.e. with negligible acceleration), so things inside the aircraft behave according to Newton's laws. And, objects dropped fall straight down.
 
  • Like
Likes Mikasun1108
PeroK said:
"When flight attendence pour some water/juice etc the liquid comes straight down and not on a different angle."

That's a good observation. The aircraft is moving almost inertially (i.e. with negligible acceleration), so things inside the aircraft behave according to Newton's laws. And, objects dropped fall straight down.
Thank you for the extra information, really appreciate it :)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top